Appendix A: Principal Component Analysis

Principal Component Analysis (PCA) is almost equivalent to Singular Value Decomposition (SVA), or Karhunen-Loeve expansion. It will be presented first as an important computational method for feature extraction from input-data (Ritter, Martinetz & Schulten, 1992; Haken, 1996; AuxLit 10). To perform PCA, input-patterns \mathbf{x}^k are decomposed into a series, i.e. a linear combination of prototype-patterns \mathbf{w}^r ($r = 1, ..., p'$):

$$\mathbf{x}^k = \mathbf{w}^0 + \sum_{r=1}^{p'} \mathbf{w}^r c_r(\mathbf{x}^k) + \mathbf{R}(\mathbf{x}^k)$$

(12.1)

DOI: 10.4018/978-1-61520-785-5.ch012

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Related Content

Engineering Gene Control Circuits with Allosteric Ribozymes in Human Cells as a Medicine of the Future
www.igi-global.com/chapter/engineering-gene-control-circuits-allosteric/76100?camid=4v1a

Interactive Data Visualization to Understand Data Better: Case Studies in Healthcare System
www.igi-global.com/article/interactive-data-visualization-to-understand-data-better/147300?camid=4v1a

Combinatorial Optimization Algorithms for Metabolic Networks Alignments and Their Applications
www.igi-global.com/article/combinatorial-optimization-algorithms-metabolic-networks/52768?camid=4v1a
Using a Genetic Algorithm and Markov Clustering on Protein–Protein Interaction Graphs
www.igi-global.com/article/using-genetic-algorithm-markov-clustering/67105?camid=4v1a