A Users’ Perspective of the Critical Success Factors Applicable to Information Centers

SIMHA R. MAGAL
Bowling Green State University

DENNIS D. STROUBLE
Bowling Green State University

Information centers (IC) are an important part of an organization; their function is to assure effective use of end-user computing technologies. With the growing role of ICs, and increasing competition for resources, comes the question of how best to manage and justify their existence. As the number and sophistication of users increase, their impact on IC performance increases, and IC management cannot ignore the user’s perspective of what is important. This study identifies the users’ perspective on what factors are critical to IC success through a questionnaire completed by 174 users. Twenty six critical success factors (CSF) are identified from the literature. These CSFs are factor analyzed to identify four composite CSFs: Type/Quality of IC Services; Expectations (what users can expect of the IC and what is expected of the users); IC Environment, and Commitment (organization’s and users’) to the IC. Type/Quality of IC Services and Expectations have a direct effect on IC success with the former having the greatest impact. Other factors have an indirect effect.

A comparison of the users’ and IC manager’s perspectives highlight several similarities and differences. There is agreement on the specific issues but their overall perspectives differ.

An alternative to formal development of computer-based capabilities is end-user computing (EUC). A support environment for EUC is often an information center (IC), and a significant number of organizations have established ICs in their organizations. Information centers represent an investment, the aim of which is the facilitation and coordination of end-user computing activities within an organization. As the concept of an IC is growing out of infancy, it is consuming an increasing portion of an organization’s scarce resources; for which the IC must compete with other parts of the organization. In addition, the IC is exhibiting a growing influence on the way the organization operates. Consequently, the need to manage this phenomena is important.

Part of managing any entity is the ability to receive information on the small areas where “things must go right” in order to achieve success (Rockart, 1979), i.e., the critical success factors (CSF). Studies that have investigated the CSFs applicable to ICs have largely focused on the IC manager’s perspective of what factors are critical. Users’ perspective is overlooked, except in one
instance. While the perspective of the IC manager is important, the view of the receiver of IC services - the users - is also relevant.

Magal et al. (1988) identified 26 CSFs applicable to ICs and analyzed the underlying structure of these CSFs to define IC management’s perspective of what factors are critical to IC success. In this study, Magal’s 26 CSFs are used to determine the end-user’s perspective of what is critical. Specifically the goals are to:

1. investigate the factors critical to an IC’s success, from a users’ perspective, and identify composite CSFs.
2. determine whether these composite CSFs for ICs vary in importance among themselves.
3. explore the relationship between the composite CSFs and IC success.
4. compare the users’ and IC management’s perspectives
5. analyze and interpret the implications of the findings

It is expected that users and managers will differ in their perspectives of what is critical to IC success. It is also expected that each group considers different CSFs to be most important and that the composite factors for each is different.

Four composite factors having direct and indirect effects on IC success are identified. Similarities and differences are found between users’ and IC management’s perspectives.

Critical Success Factors

Critical success factors represent those areas of a business activity that management must constantly monitor and ensure that results obtained are satisfactory. Satisfactory performance in these critical areas will ensure successful competitive performance for the organization (Rockart, 1979).

While there are several approaches available for identifying management’s information needs, each with its advantages and disadvantages, the CSF approach is used extensively. For example, Munro and Wheeler (Munro & Wheeler, 1980) used the CSF approach to determine information requirements for management control; Meador and Mezger (1984) included CSF identification as one of the steps in the process of selecting an end-user programming language; Shank, Boynton and Zmud (1985) used the CSF approach in identifying corporate information needs and subsequently in developing a corporate information systems plan; and Zahedi (1987) explored reliability as a measure of information systems success based on CSFs.

Critical success factors for information centers have been investigated in several studies. Leitheiser and Wetherbe (1985), through a telephone survey of twenty seven information center managers, investigated IC successes, failures and critical success factors. The most frequently mentioned CSFs were the timeliness of the services provided and the competence of the IC staff. In another study based on case studies, Sumner (1985) identified a variety of CSFs applicable to information centers. Branchau, Vogel and Wetherbe (1985) investigated information centers from the perspective of the end-user. Their findings included a list of CSF which the end-users were asked to identify by putting themselves in the shoes of their IC manager. The most frequently cited CSFs were IC staff related.

Magal, Carr and Watson (1988) consolidated prior work on CSFs and identified and validated a set of CSFs applicable to information centers. They identified 26 CSFs (see Table 1) and analyzed them to identify five composite factors:

1. The Quality of IC Support Services
2. Facilitation of End-user Computing
3. Commitment to the IC Concept
4. Role Clarity
5. Coordination of End-user Computing

Their study suggests that these five composite CSFs represented the basic nature of an IC and were used to define a model of an IC, as perceived by IC management.