Changes in Motivation of I.S. Managers — Comparison Over a Decade

J. DANIEL COUGER
EDWARD B. OPPERMANN
DONALD L. AMOROSO
University of Colorado, Colorado Springs

A research study on motivation perceptions of I.S. managers was conducted in 1978. It was replicated in 1990. Comparisons between the two groups revealed that growth need and motivation potential of the job are not significantly different. Satisfaction levels changed positively — both satisfaction with supervision and pay satisfaction were significantly higher in 1990. General satisfaction was relatively unchanged as was social need. There were gender differences; social need for females continued to be significantly lower. The differences in growth need by gender disappeared, however. Female managers were less satisfied than males in 1990, for all three satisfaction categories. Although growth need and the job’s motivating potential were well matched for both males and females on the average, there were cases of individuals whose jobs were not sufficiently rich. An analytical framework is provided for enhancing an individual’s job in these cases of mismatch.

The first study of motivation factors for IS managers was conducted in 1978. Permission and mailing labels were obtained from the offices of three professional societies: DPMA, ASM, and SIM. The survey is designed to elicit responses on the factors concerning motivation. Several interesting characteristics of IS managers were revealed (Couger 1979). In comparison to non-I.S. managers in a data base gathered with the same survey instrument, I.S. managers had a very high need for growth and a very low need for social interaction. They were very goal-oriented and found their jobs highly challenging. Their satisfaction levels were also quite high. However, they believed their feedback from management to be deficient. In 1990, the authors received permission from the same three societies to replicate the survey. Over 700 persons at the management level participated in each of the two surveys.

Review of the Survey Methodology

The survey instrument was the Job Diagnostic Survey for Data Processing (JDS/DP). It was evolved from the JDS developed by J. Richard Hackman, Yale University, and Greg R. Oldham, University of Illinois. We chose to use their instrument rather than develop our own for two reasons:

1) Both the validity and reliability of the JDS had been substantiated (Hackman and Oldman, 1979).
2) The Hackman/Oldham data base includes information on more than 6,000 persons in 800 jobs. We wanted to be able to compare perceptions of persons...
in the I.S. field to those in other professions. We hypothesized that there were significant differences. This hypothesis was substantiated and reported in the paper mentioned above (Couger, et al., 1979).

To preserve the integrity of the JDS, the general questions of the original instrument were left unchanged. Questions relating specifically to the computer field were added and validated (Couger and Zawacki, 1980). We also incorporated JDS questions established and validated in earlier studies by W.E. Rosenbach (1977)—questions related to goal setting and organizational climate.

The JDS extends the work of Herzberg in the late 1950s (Herzberg, et al., 1959). This branch of behavioral science concentrated on demonstrating that the primary determinants of motivation and employee satisfaction are factors intrinsic to the job—the work itself, recognition, achievement, responsibility, advancement and personal growth in competence. In the ensuing 15 years, the theory was evolved into practical application through the contributions of a number of researchers and research projects, principally those by R.N. Ford (1969), A.N. Turner and P.R. Lawrence (1965) and L.E. Davis (1978).

Model of Motivation

Out of this research, Hackman and Oldham developed a conceptual model of motivation[9]. Our survey results are related directly to the model components, shown in Figure 1.

Critical Psychological States

The positive work outcomes shown at the bottom of the model result from attainment of the three critical psychological states, which are the causal core of the model: 1) experienced meaningfulness of the work, 2) experienced responsibility for the outcomes of the work, and 3) knowledge of the results of the activities. The model postulates that individuals experience positive effect to the extent that they learn (knowledge of results), that they personally (experienced responsibility) have performed well on a task that they care about (experienced meaningfulness).

This positive effect is reinforcing to the individual, and serves as an incentive to continue to try to perform well in the future. When an individual does not perform well, he or she does not experience an internal reinforcement and may elect to try harder in the future, in order to regain the internal rewards that good performance brings. The net result is a self-perpetuating cycle of positive work motivation powered by self-generated rewards, that is predicted to continue until one or more of the three critical psychological states is no longer present—or until the individual no longer values the internal rewards that derive from good performance.

Core Job Dimensions

The extent to which the psychological states are achieved depends on the degree to which each of the five core job dimensions are in existence:

1) **Skill Variety.** The degree to which a job requires a variety of different activities in carrying out the work, which involve the use of a number of different skills and talents of the person.

2) **Task Identity.** The degree to which the job requires completion of a “whole” and identifiable piece of work—i.e., doing a job from beginning to end with a visible outcome.

3) **Task Significance.** The degree to which the job has a substantial influence on the lives or work of other people—whether in the immediate organization or in
Related Content

Managing an Engineering Project
www.igi-global.com/article/managing-an-engineering-project/143118?camid=4v1a

Effective Virtual Teams
www.igi-global.com/chapter/effective-virtual-teams/13740?camid=4v1a

Implementing Information Technology to Effectively Utilize Enterprise Information Resources
www.igi-global.com/article/implementing-information-technology-effectively-utilize/44500?camid=4v1a

Project-to-Organization Matching: An Integrated Risk Assessment Approach
www.igi-global.com/article/project-organization-matching/68851?camid=4v1a