Utilization and User Satisfaction in End-User Computing: A Task Contingent Model

CHANGKI KIM, Korea Advanced Institute of Science and Technology, South Korea
KUNSOO SUH, Soonchunhyang University, South Korea
JINJOO LEE, Korea Advanced Institute of Science and Technology, South Korea

There has been much controversy regarding the relationship between utilization and user satisfaction. Moreover, conflicting empirical results on that relationship have been reported. Based on the information processing view, a new, alternative model which can resolve this conflict is suggested. The model includes the congruence of task uncertainty and utilization and the contingent effect of task uncertainty on the relationship between utilization and user satisfaction in the context of end-user computing (EUC). This new model is moderately supported by an analysis of data obtained from 134 end-users in 16 Korean business organizations. The results imply that we should pay attention to the fit between task uncertainty and utilization to promote user satisfaction. The results also provide a framework which resolves the inconsistent relationship between utilization and user satisfaction. Implications and future research directions are drawn for further research on MIS and EUC and for the management of EUC.

Utilization and user satisfaction have been used most extensively as the dependent variable to surrogate IS success (Amoroso & Cheney, 1991; Igbaria & Nachman, 1990). These two variables are also the primary measures of success in the study of end-user computing (EUC) (Ein-Dor & Segev, 1982; Schiffman et al., 1992). Taking these two variables into consideration, two issues prompt concern: the adequacy of them as surrogate measures and the relationship between them.

As a surrogate measure for IS success, utilization is an excellent measure in that it is more objective and easier to quantify than any other measures identified (DeLone & McLean, 1992). However, it has been argued that utilization is appropriate only when such usage behavior is voluntary (DeLone & McLean, 1992; Gatian, 1994). Researchers who insist on this argument have generally adopted the user satisfaction approach. User satisfaction instruments, however, have a significant problem in that they rely solely on cognitive dimension (beliefs about characteristics of a system) and affective dimension (attitudes towards a system or towards using a system) of IS success without accounting for the performance-related dimension (performance-related goals for which systems are designed) (Etezadi-Amoli & Farhoomand, 1996). In spite of weaknesses of these two measures, utilization and user satisfaction are the most frequently proposed alternatives.

In this paper, the relationship between the two constructs is our primary concern. There has been inconsistency on that relationship. In addition, conflicting empirical results lead to the conclusion that the relationship may need further investigation (Igbaria & Nachman, 1990). Based on the information processing view, we make an effort to resolve this perplexing issue. A task contingent model to clarify the relationship between them is suggested and empirically tested in the context of EUC.

The information processing view of organizations is that
organizational effectiveness is a function of the fit between the information processing requirements and the information processing capacity of the organization (Tushman & Nadler, 1978). In the context of EUC, the information processing requirements are largely determined by end-users’ task uncertainty. In order to increase information processing capacity, one of the most important mechanisms is to invest in information technology (Ghani, 1992). At an individual level, end-users are able to increase their information processing capacity by being involved in EUC activities, which can be represented objectively by utilization measures. Task uncertainty, therefore, would be closely associated with utilization. And user satisfaction depends to some extent on the match between task uncertainty and utilization. In this perspective, we can argue that the match between task uncertainty and utilization is more important than the simple increment of utilization.

In summary, the purpose of this paper is to suggest a task contingent model clarifying the relationship between utilization and user satisfaction. Based on empirical data, this study examines the model: the direct relationship between task uncertainty and utilization, and the moderating effect of task uncertainty on the relationship between utilization and user satisfaction.

Theoretical Background

End-User Computing

In defining EUC, Rivard and Huff (1985) attempted to be more definitive by distinguishing between user developed applications (UDA) and the much broader set of activities termed EUC. Sipior & Sanders (1989) defined EUC as the development and use activities associated with the employment of computer resources to perform or facilitate job-related tasks and responsibilities. This study defines EUC more broadly as the direct, individual use of computers encompassing all the computer-related activities, by non-DP professionals, to accomplish or facilitate one’s job (Rainer & Harrison, 1994; Sipior & Sanders, 1989; Doll & Torkzadeh, 1989; Ein-Dor & Segev, 1991). And this study defines end-users as the non-DP professionals who use and sometimes develop and manage computer-based applications to support their work in functional areas (Alavi, 1985; Benson, 1983; Sipior & Sanders, 1989; Trauth & Cole, 1992).

As mentioned above, the broad set of activities associated with the use of the computer for job-related tasks have been referred to as EUC (Sipior & Sanders, 1989). End-users are involved in EUC activities in order to enhance their job effectiveness and/or to accomplish their tasks. So, task characteristics is one of the key variables affecting EUC success (Cheney et al., 1986; Ghani, 1992). However, few empirical studies have focused on task characteristics. In this paper, task variability and analyzability, the basic dimensions of task characteristics, are key variables that explain utilization and user satisfaction.

Task Uncertainty and End-User Computing: An Information Processing View

A large number of organization theory researchers have made information processing the integrating or central concept in models that attempt to describe how organizations can match information processing requirements arising from task technology to information processing capacity arising from organization design and structure in order to achieve high organizational performance (Daft & Lengel, 1986; Galbraith, 1977; Keller, 1994; Tushman & Nadler, 1978). The basic idea of these models is that too much capacity will be redundant and costly, while too little capacity will not get the job done (Tushman & Nadler, 1978). Recent researches have tested important contingency theory hypotheses between fit and performance, with fit conceptualized as a match between task technology and information processing (Keller, 1994).

The managerial information processing model or media richness theory is the best known formulation that extends this general information processing model to relationships between task characteristics, use of communication media, and performance. In this model, as similar to the general information processing model, the main proposition is that performance depends to some extent on the match between task uncertainty and the characteristics of the medium used.

Task uncertainty is defined as the difference between the amount of information needed to complete a task and the amount of information already possessed by the organization (Galbraith, 1977). Researches in both MIS and organization theory recognize the close relationship between task uncertainty and organizational information processing (Ghani, 1992). Perrow (1967) originally proposed and described the two basic dimensions of task uncertainty: number of exceptions and analyzability. The first dimension refers to task variability. Task variability is defined as the number of exceptional cases, or unexpected and novel events encountered, which require different methods or procedures for doing the works (Perrow, 1967). The second dimension, task analyzability, is defined as the availability of concrete knowledge about task activities (Specht, 1986) and the degree of complexity of the search process in performing the task (Perrow, 1967). It concerns how individuals respond to problems that arise in the process of task completion.

In the EUC environment, end-users’ task uncertainty is the major determinant of information processing requirements. While task variability affects the amount of information required to handle unexpected events, task analyzability affects the form of information necessary to resolve ambiguities (Ghani, 1992). Information processing needs arising from task variability requires computing activities that can provide sufficient amount of information. Hence, highly variable tasks require diverse EUC activities. On the other hand, information processing needs arising from task analyzability requires computing activities that can provide the relevant
Related Content

The Algos Center: Information Systems in a Small Non-Profit Organization
www.igi-global.com/chapter/algos-center-information-systems-small/6380?camid=4v1a

Suspicons of Cheating in an Online Class
Julia Davis (2011). Teaching Cases Collection (pp. 31-37).
www.igi-global.com/article/suspicions-cheating-online-class/60385?camid=4v1a

Developing the Product Your Customer Really Wants: The Value of an Agile Partnership
www.igi-global.com/article/developing-the-product-your-customer-really-wants/163241?camid=4v1a

Clustering Dynamics of the ICT Sector in South Africa
www.igi-global.com/chapter/clustering-dynamics-ict-sector-south/22796?camid=4v1a