A Metaheuristic Approach to the Graceful Labeling Problem

Houra Mahmoudzadeh, Sharif University of Technology, Iran
Kourosh Eshghi, Sharif University of Technology, Iran

ABSTRACT

In graph theory, a graceful labeling of a graph \(G = (V, E) \) with \(n \) vertices and \(m \) edges is a labeling of its vertices with distinct integers between 0 and \(m \) inclusive, such that each edge is uniquely identified by the absolute difference between its endpoints. In this paper, the well-known graceful labeling problem of graphs is represented as an optimization problem, and an algorithm based on Ant Colony Optimization metaheuristic is proposed for finding its solutions. In this regard, the proposed algorithm is applied to different classes of graphs and the results are compared with the few existing methods inside of different literature.

Keywords: Algorithm, Ant Colony Optimization, Graceful Graphs, Labeling, Metaheuristic

GRACEFUL LABELING PROBLEM

In graph theory, a graceful labeling of a graph \(G = (V, E) \) with \(n \) vertices and \(m \) edges is a labeling of its vertices with distinct integers between 0 and \(m \) inclusive, such that each edge is uniquely identified by the absolute difference between its endpoints. To be more precise, if we assume \(G = (V, E) \) to be an undirected graph without loops or double connections between vertices, a graceful labeling of \(G \), with \(n \) vertices and edges, is a one-to-one mapping \(f \) of the vertex set \(V \) into the set \(\{0, 1, 2, ..., m\} \), so that if we assign an edge label \(|f(x) - f(y)| \) to any edge \((x, y) \), each edge receives a distinct positive integer label. A graph that can be gracefully labeled is called a graceful graph (Rosa, 1967).

A sample graceful graph is shown in Figure 1. Vertex labels are shown inside the vertex circles, and edge labels are shown in red near the related edges.

The name “graceful labeling” is due to Solomon W. Golomb; however, this class of labelings was originally given the name \(\beta \)-labelings by Alex Rosa in a 1967 paper on graph labeling (Rosa, 1967). The computational complexity of the graceful labeling problem is not known, but a related problem called harmonious labeling was shown to be NP-complete (Gallian, 2009). In fact, the graceful labeling problem is rather a well-known example of the problems in NP, which are not known to be NP-complete, and neither known to be in P (Johnson, 2005). Many variations of graph labeling have been introduced in recent years by researchers. Various classes of graphs have been proven mathematically to be grace-
ful or non-graceful. A detailed survey of graph labeling problems and the related results are shown in a survey by Gallian (2009). There is an unproved conjecture that all trees are graceful. Although, it is shown that trees with up to 27 vertices are graceful. It is shown that all cycles C_n are graceful if and only if $n \equiv 0$ or 3 (mod 4). All wheels W_n, Helms H_n, and Crowns R_n are graceful. The complete graphs K_n are graceful if and only if $n \leq 4$. The necessary condition for a windmill K_n^m ($n \geq 3$) to be graceful is that $n \leq 5$; a windmill K_n^m consists of m complete graphs K_n with one common vertex (Gallian, 2009). An example for each class of the graphs mentioned above and their graceful labelings are shown in Figure 2.

The graceful labeling problem is to find out whether a given graph is graceful or not, and if it is, how to label the vertices. The process of gracefully labeling a graph is a very tedious and difficult task for many classes of graphs (Eshghi & Azimi, 2004).

In the problem literature, many methods are presented for proving gracefulfulness of different classes of graphs theoretically, but most of them did not use a general method for finding the graceful labeling of the graphs to be studied. These theoretical methods focus on

Figure 1. An example of graceful labeling of a graph

Figure 2. Examples for some classes of graceful graphs and their graceful labelings: (a) a cycle C_7, (b) a tree T_{10}, (c) a wheel W_4, (d) a helm H_5, (e) a crown R_5, (f) a windmill K_3^4

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
A Genetic Algorithm for the Parallel Machine Scheduling Problem with Consumable Resources
www.igi-global.com/article/genetic-algorithm-parallel-machine-scheduling/77636?camid=4v1a

Feasibility of Using Tablet-Based Cognitive Screening Tools in India: A Short Review