A Next Generation Technology Victim Location and Low Level Assessment Framework for Occupational Disasters Caused by Natural Hazards

Nik Bessis, University of Derby, UK
Eleana Asimakopoulou, University of Bedfordshire, UK
Peter Norrington, University of Bedfordshire, UK
Suresh Thomas, University of Bedfordshire, UK
Ravi Varaganti, University of Bedfordshire, UK

ABSTRACT

Much work is underway within the broad next generation technologies community on issues associated with the development of services to support interdisciplinary domains. Disaster reduction and emergency management are domains in which utilization of advanced information and communication technologies (ICT) are critical for sustainable development and livelihoods. In this article, the authors aim to use an exemplar occupational disaster scenario in which advanced ICT utilization could present emergency managers with some collective computational intelligence in order to prioritize their decision making. To achieve this, they adapt concepts and practices from various next generation technologies including ad-hoc mobile networks, Web 2.0, wireless sensors, crowd sourcing and situated computing. On the implementation side, the authors developed a data mashup map, which highlights the criticality of victims at a location of interest. With this in mind, the article describes the service architecture in the form of data and process flows, its implementation and some simulation results.

Keywords: Ad-Hoc Mobile Network, Collective Computational Intelligence, Disaster Management, Next Generation Technologies, Occupational Disaster, Web 2.0

INTRODUCTION

Phenomena such as earthquakes, hurricanes, storms, landslides, forest fires, heavy snow and others take place daily and are considered as natural phenomena and as such, ‘natural phenomena are normal and essential planetary actions’ (Asimakopoulou et al., 2006). It has been said that an extreme natural phenomenon may be characterized as catastrophic and hazard-
ous by the scope of people in relation to their lives, property, as well as their environment. In managing disasters and in particular during the response phase, it is apparent that a number of teams and individuals from multiple, geographically distributed organizations are required to communicate, cooperate and collaborate in order to take appropriate decisions and actions (Graves, 2004; Otten et al., 2004).

Various technological developments over the last years have facilitated users with numerous tools to support various levels of enquiry within the environment of their organisation or community. Specifically, the use of computer-based collaborative technologies has evolved over the years through developments in distributed computational science in a manner, which provides improved applicable intelligence to their problem-solving capabilities.

In fact, most of these technologies have emerged with the view of producing frameworks and standards to fully or partially – yet purposefully – support seamless integration processes within heterogeneous distributed environments. Emerging paradigms and their associated concepts highlighting their benefits include but are not limited to Web Services, Web 2.0, Ad-hoc mobile networks using wireless sensors, Pervasive, Grid and Cloud computing as well as Crowd sourcing and Situated computing. Their goal is to enable an approach relevant to collective resource utilization and thus, enhance multi-user participation in functioning as a coherent unit through the use of a Cyber Infrastructure (Bessis et al., 2010). That is, to purposefully work together, collaborate and solve a well-defined problem of mutual interest from a multi-user point of view. As such, they typically enable the provision of shared and often real-time access to, centralized or distributed resources, such as applications, data, models, toolkits and sensors.

Within this in mind, the article aims firstly to present an occupational hazard case scenario as a means to describe stakeholders functional requirements; secondly to elaborate the case scenario by offering a brief overview of how emerging technologies could be utilized to enable some improved intelligence in decision making; thirdly to describe the service architecture in the form of data and process flow diagrams followed by its implementation. Finally, we conclude by providing a simulation experiment.

An Exemplary Occupational Disaster Management Scenario

We present here a previously published (Bessis et al., 2010) fictional yet typical occupational hazard scenario, which is used throughout the remainder of our article as a point of reference.

In an urban area a major earthquake of some significant magnitude on the Richter scale has occurred. The area is highly populated and characterized by multi-storey buildings, such as blocks of offices, malls and other public buildings. The occurrence of the earthquake caused a disastrous situation, as some of the buildings have collapsed and some people have been injured and trapped. Further to this, a number of secondary phenomena follow the occurrence of the main hazard, such as electricity failures, fires and a series of aftershocks.

The area’s civil protection department has organised the emergency operation in order to respond to the disaster. According to the area plans and to the emergency calls that reach the emergency services, operational units (OU) have been sent on site to locate and rescue earthquake victims. The members of an OU have to work as a team and to report back to the operation centre about their status and progress. OU members have to find ways to locate (positioning) and then reach trapped victims within the collapsed buildings. This process is quite uncertain and surely dangerous, as the stability of the affected structural elements cannot be easily assessed. Further to this, the fact that aftershocks with different magnitudes and without lead-time occur in the area makes these attempts more difficult and dangerous. For example, imagine that while members of an OU-1 are inside of an affected multi-storey block of offices an aftershock occurs, which in turn results in some of the already affected structural elements of the building collapsing.