Chapter 6
An End-User’s Journey of System Use: A Change in Attitudes and Behavior Over a Period

Zahid Hussain
University of Bradford, UK

Khalid Hafeez
The University of York, UK

ABSTRACT
Using a new information system is a journey that end-users follow, sometimes by choice and at other times by obligation. This journey changes their attitudes and behavior as they explore the system and discover its workings. In this chapter we map such a journey using Morgan’s (1986, 1997) metaphors by tracking a change in end-user attitudes and behavior. We use a longitudinal case study approach to follow this journey, report the direction and any shifts in end-users’ conceptual position. Our results show that within a space of eighteen months the organization’s overall metaphorical stance shifted from the organism to the machine metaphor. This reflects the end-user’s initial optimism for the change to enable ease of working to that of efficiency dictated by the senior management towards the end. This shift was due to organizational conditional factors, such as the ISD methodology.

1. INTRODUCTION
This chapter describes our use of Morgan’s (1986, 1997) metaphors in describing the end-user’s journey of system use by tracking a change in their attitudes and behavior over a period at a UK National Health Service (NHS) hospital. We use a case study approach, within which we elicit the attitudes using a questionnaire and infer the behavior using observations and interviews. We
created a research instrument based on the eight metaphors of Morgan and four organizational paradigms of Burrell and Morgan (1979), and draw upon the work of Hirschheim et al. (1995).

We present the results in the form of a journey for the end user, tracking the metaphorical shift for each end-user, over the project duration. We show how individual journeys can be combined to capture organizations’ shift in metaphorical position. Our results show that within a space of eighteen months the organization’s overall metaphorical stance shifted from the organism to the machine metaphor. This reflects the end-user’s initial optimism for the change to enable ease of working to that of efficiency dictated by the senior management towards the end. We also found that this shift was due to organizational conditional factors, such as the ISD methodology. We believe that such use of metaphors, for making sense of end-user attitudes and behavior, is rare but very valuable to researchers and practitioners.

Metaphors are useful communication devices in our daily conversations. They are conceptual tools that we use to make sense of the world and interpret meaning (Pepper, 1942; Ortony, 1975; Smith & Simmons, 1983; Oswick & Grant, 1996). Using analogies, metaphors create mental pictures that help to interpret the world, such as viewing the working of an organization as a machine. Lakoff & Johnson (1980) and Morgan (1986) believe that by creating certain types of realities within our minds metaphors assist us to contextualize the world in ways that we may not have envisaged before. Morgan (1986) provides eight metaphors for organizations: machine, organism, brain, culture, political system, psychic prison, flux and transformation, and instruments of domination. A detailed description of these is given in Appendix 1. These metaphors help to make sense of organizational structure, management control, management style and behavior by associating certain meanings to them. On the other hand, these metaphors encapsulate perceptions of individuals by expressing their motives, desires, attitudes, needs and dedication towards the organization.

Orlikowski & Gash (1994) suggest that attitudes, mental frames or cognitive structures have a key effect in shaping the information system development (ISD) related behavior of individuals. End-user involvement and satisfaction is crucial for system success (Harris, 2000; Butler & Fitzgerald, 2001; McGill, 2004; Adams, 2004) especially in public sector organizations (Lau & Herbert, 2001; Aladwani, 2002). However, understanding of end-user attitudes and behavior during their involvement in ISD is a difficult and complex task, as end-users’ views can be deep-rooted or hidden (Shaw et al., 2003) while they are still learning about the system and its proposed use (Stein & Vandenbosch, 1996; Wagner, 2000; Tiwana & McLean, 2005). We believe that metaphors can be very useful in dealing with such complexities (Xia & Lee 2005). In the past, metaphors have been used by IS researchers in making sense of organizational context. However, most researchers only used one or two metaphors in their study (see for example, Boland & Greenberg, 1992; Heiskanen, 1993; Kling & Iacono, 1984; Mumford & Weir, 1979; Wilson, 1994). However, we concur with Walsham (1991, 1993) and Oates & Fitzgerald (2007) that applying several metaphors would help in making a better sense of the research situation.

Therefore, in this research we use all eight of Morgan’s (1986, 1997) metaphors in making sense of the attitudes and behaviors of end-users, during their involvement in an ISD project, in a UK National Health Service (NHS) hospital. Using our research instrument (Appendix 1) we mapped Morgan’s (1986, 1997) eight metaphors onto Burrell & Morgan’s (1979) paradigms. This enabled us to link each of these eight metaphors to their philosophical underpinning. We conducted a gap analysis between the underlying attitudes and behavior of several key end-users at the beginning and towards the end of the project. This allowed us to identify a metaphorical journey, for each
Related Content

A 4GL Based Executive Search System
[www.igi-global.com/article/4gl-based-executive-search-system/55695?camid=4v1a](www.igi-global.com/article/4gl-based-executive-search-system/55695?camid=4v1a)

Anomaly Detection Using RFID-Based Information Management in an IoT Context

Antecedents of Improvisation in IT-Enabled Engineering Work
[www.igi-global.com/chapter/antecedents-improvisation-enabled-engineering-work/69621?camid=4v1a](www.igi-global.com/chapter/antecedents-improvisation-enabled-engineering-work/69621?camid=4v1a)

Quality of Use of a Complex Technology: A Learning-Based Model
[www.igi-global.com/chapter/quality-use-complex-technology/7039?camid=4v1a](www.igi-global.com/chapter/quality-use-complex-technology/7039?camid=4v1a)