Chapter 4.12

The MOBEL Project: Experiences from Applying User-Centered Methods for Designing Mobile ICT for Hospitals

Inger Dybdahl Sørby
Norwegian University of Science and Technology, Norway

Line Melby
Norwegian University of Science and Technology, Norway

Yngve Dahl
Telenor Research & Innovation, Norway

Gry Seland
Norwegian University of Science and Technology, Norway

Pieter Toussaint
Norwegian University of Science and Technology, Norway

Øystein Nytrø
Norwegian University of Science and Technology, Norway

Arild Faxvaag
Norwegian University of Science and Technology, Norway

ABSTRACT

This chapter presents results and experiences from the MOBEL (MOBile ELe ctronic patient record) project at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. MOBEL was a multidisciplinary research project established in 2000. The problem area of the project was communication and information needs in hospital wards, and the aim of the project was to develop and explore methods and prototypes for point of care clinical information systems (PoCCS) that support clinicians in their patient-centered activities. The chapter summarizes four sub studies performed during the project. Each study presents different approaches to user-centered design of PoCCS. Findings from these studies confirm the need for mobile information and communication technology (ICT) in hospitals. Furthermore, the studies demonstrate how more user involvement and complementary approaches to traditional requirements engineering (RE) and system development methods can be useful when developing mobile information and communication systems for clinicians.

DOI: 10.4018/978-1-60960-561-2.ch412
INTRODUCTION

The Information and communication systems that are employed in today’s health organizations are still to a high extent designed according to what can be called the desktop computer interaction model. The underlying assumption of this model is that support must be given to an individual user at a stable location. This model works well in most office environments, where users interact with information systems at their office desk, performing mostly isolated and well-demarcated tasks. However, as will be argued in this chapter, the model does not readily apply to clinical work. Clinical work is inherently different from office work in a number of important aspects. This implies that different types of systems are needed to support clinical work and moreover that different approaches and methods are used for designing these systems. This insight motivated the MOBEL (MOBile ELECTronic patient record) project that will be presented in this chapter.

The MOBEL project was established in 2000 as an interdisciplinary research project under the strategic area of medical technology at the Norwegian University of Science and Technology (NTNU). The basic insight motivating the project was that clinical work has some specific characteristics that distinguish it from what can be referred to as ‘office work’. The most prominent of these characteristics are:

- **It is inherently mobile**: Clinicians have to move between patients who are physically distributed and interact with colleagues at different locations. There is not one, stable workplace.
- **It is information intensive**: Doing clinical work requires a lot of information. This involves information about the nature and stages of the patient’s disease(s), his clinical condition, the actions taken and the actions planned. Furthermore, a lot of information is produced as a result of clinical work.
- **It is highly collaborative**: Clinicians work in teams. Their work involves shared re-
Related Content

Imaging in Periodontology: 2D versus 3D Visualization Techniques
www.igi-global.com/chapter/imaging-periodontology-versus-visualization-techniques/40447?camid=4v1a

Compression of Surface Meshes
Frédéric Payan and Marc Antonini (2011). *Biomedical Diagnostics and Clinical Technologies: Applying High-Performance Cluster and Grid Computing* (pp. 163-180).
www.igi-global.com/chapter/compression-surface-meshes/46690?camid=4v1a

The Hidden Markov Brains
www.igi-global.com/chapter/hidden-markov-brains/71982?camid=4v1a

Transcranial Magnetic Stimulation (TMS) as a Tool for Neurorehabilitation in Parkinson’s Disease
www.igi-global.com/chapter/transcranial-magnetic-stimulation-tms-tool/53623?camid=4v1a