Chapter 11
The Current and Future Status of Floristic Provinces in Thailand

P.C. van Welzen
Leiden University, The Netherlands

A. Madern
Leiden University, The Netherlands

N. Raes
Leiden University, The Netherlands

J.A.N. Parnell
Trinity College Dublin, Ireland

D.A. Simpson
Royal Botanical Gardens, UK

C. Byrne
Trinity College Dublin, Ireland

T. Curtis
Trinity College Dublin, Ireland

J. Macklin
Trinity College Dublin, Ireland

A. Trias-Blasi
Trinity College Dublin, Ireland

A. Prajaksood
Trinity College Dublin, Ireland

P. Bygrave
Royal Botanical Gardens, UK

S. Dransfield
Royal Botanical Gardens, UK

D.W. Kirkup
Royal Botanical Gardens, UK

J. Moat
Royal Botanical Gardens, UK

P. Wilkin
Royal Botanical Gardens, UK

C. Couch
Royal Botanical Gardens, UK

P.C. Boyce
Universiti Sains Malaysia, Malaysia

K. Chayamarit
Thailand Botanical Garden Association, Thailand

P. Chantaranothai
Khon Kaen University, Thailand

H-J. Esser
Botanische Staatssammlung München, Germany

M.H.P. Jebb
Ireland National Botanical Gardens, Ireland

DOI: 10.4018/978-1-60960-619-0.ch011
1. INTRODUCTION

Species are generally not randomly distributed. Plants and animals originate via evolution and this always happens in a geographically restricted area. Thus, it is not surprising that man has searched for patterns in these distributions, that is in the areas in which species are found. One means of finding these patterns is to examine if certain areas can be characterized by species which are in combination typical for the area. The resulting regions are called, in the case of plants, floristic or phytogeographical regions. Usually, a country/continent is completely subdivided into these areas and these are mutually exclusive.
Related Content

Analysis of the Eco-Efficiency Change of Chinese Provinces: An Approach Based on Effect Matrix Analysis

Agriculture and Conservation in the Natura 2000 Network: A Sustainable Development Approach of the European Union
Cristian Ioja, Laurentiu Rozyłowicz, Maria Patroescu, Mihai Nita and Diana Onose (2011). *Agricultural and Environmental Informatics, Governance and Management: Emerging Research Applications* (pp. 339-358).
[www.igi-global.com/chapter/agriculture-conservation-natura-2000-network/54416?camid=4v1a](www.igi-global.com/chapter/agriculture-conservation-natura-2000-network/54416?camid=4v1a)

Extending the RPL Routing Protocol to Agricultural Low Power and Lossy Networks (A-LLNs)

Hadoop Paradigm for Satellite Environmental Big Data Processing
[www.igi-global.com/article/hadoop-paradigm-for-satellite-environmental-big-data-processing/244146?camid=4v1a](www.igi-global.com/article/hadoop-paradigm-for-satellite-environmental-big-data-processing/244146?camid=4v1a)