Chapter 10

Adaptive Multiplayer Ubiquitous Games: Design Principles and an Implementation Framework

Chen Yan
Game School of the Jilin Animation Institute, China

Stéphane Natkin
Centre d’Etude et de Recherche en Informatique du Conservatoire National des Arts et Métiers, France

ABSTRACT

One of the goals of ubiquitous computing technologies is to provide an adaptable and personal content at any time and in any context. As a consequence a user-centered design is required. The goal of this research is to develop new gameplays and new narration principles for Multiplayer Ubiquitous Game. We aim to formalize a narrative mechanism to generate events which can stimulate the user’s physical actions with the real world, and social communications with other players. Based on the analysis of the relationship between the real world and the virtual world, a narration adaptive to the user’s profile is proposed. A prototype using these principles has been developed using off the shell services available on location-based mobile phones.

ADAPTIVE NARRATION IN MULTIPLAYER UBQUITOUS GAMES

An increasing complexity of relationships between the real world and the virtual world is arising in the next generation games (Björk, Holopainen, Ljungstrand, & Åkesson, 2002). The new types of interaction experimented in Massively Multiplayer Online Games (MMOG) like “World of Warcraft” (Blizzard, 2004), geolocalized games like “Botfighter2”(AliveMobile, 2000)or “Mogi” (Newtgame, 2003), Mixed Reality games like
Adaptive Multiplayer Ubiquitous Games

"Age Invaders" (Khoo & Cheok, 2006) or relying on the real time political events of the real world like “Geo-Political Simulator” (Eversim, 2004) and Internet and mail based adventure games like “In Memoriam” (Lexis Numérique, 2003) have one or several of the following properties:

- Pervasive: the game interacts with the player’s life at uncontrolled times through email and phone calls, for example.
- Social: the game leads to social interactions between the players and more generally between people.
- Ubiquitous: The game relies on a ubiquitous computer system using all of the daily objects as interface and is aware of the user’s context and needs.
- Mobile: the gameplay relies on the player’s physical mobility.
- There is no general analysis of the type of entertainment which relies on mixed reality interactive media and, of course, no underlying narrative theory. In this paper, we present a method to develop Multiplayer Ubiquitous Games (MUG). Our goal is to define a model of mixed reality interactive narration which is able to:
 - Define the global principle of the game: goal of the game, why the user is interested to play and what type of interactions are involved.
 - Define the ludic and narrative principles, the objects in the real and the virtual worlds and their semantic relations, and the user model.
 - Define the learning process of the user model and the decision process of the ludonarrative system.

The research project relies on four steps presented in this paper. The first step is to classify and clarify some concepts used in the analysis of the possible interaction between Virtual Worlds (VW) and Real Worlds (RW) for entertainment applications. In the first section we recall a general model of the relationship between RW and VW and state a terminology. It leads to a classification of applications and seven criteria with their definitions and possible values. The second step is to specify a relation scheme between the information related to the player behavior and possible narration schemes. According to the information available, we consider three possible levels of the user model: generic, localized and personalized. Considering the model of the user as a key element of the game system, we propose three types of narration scheme: global, context-oriented and character-based. In the third step we defined a model of the user, implemented in the game, which allows an adaptive driving of the game evolution according to the user’s preferences. The functional architecture of this feedback loop between the RW and the VW is presented. The last step is to validate our approach through an experimental MUG game.

REAL AND VIRTUAL WORLDS

Basic Concepts

In this section we will define the main components of mixed reality ubiquitous systems we are dealing with. In the RW there are one or several people who know that their actions may interact with the VW. We will call these people the users of the system. This means that the user has a representation in the virtual world whose behavior is perceptible to him. The identification of a user in the virtual space is known as “avatar”, which is an anonymous and dynamic character put in charge to explore the VW, and sometimes may be partly autonomous without control of the user.

The part of the RW which is concerned by this study is the user’s physical environment when he is involved in the dedicated applications. It contains all of the contextual information needed to interpret the meaning of the virtual world within
Related Content

Cognitive Route Search Technique for Self-Driving Vehicles
Hironori Hiraishi and Fumio Mizoguchi (2018). International Journal of Cognitive Informatics and Natural Intelligence (pp. 29-41).
www.igi-global.com/article/cognitive-route-search-technique-for-self-driving-vehicles/197412?camid=4v1a

Algorithm of Fuzzy Support Vector Machine based on a Piecewise Linear Fuzzy Weight Method
www.igi-global.com/article/algorithm-of-fuzzy-support-vector-machine-based-on-a-piecewise-linear-fuzzy-weight-method/203619?camid=4v1a

Quantitative Semantic Analysis and Comprehension by Cognitive Machine Learning
www.igi-global.com/article/quantitative-semantic-analysis-and-comprehension-by-cognitive-machine-learning/171993?camid=4v1a

A Scientific Look at the Design of Aesthetically and Emotionally Engaging Interactive Entertainment Experiences
www.igi-global.com/chapter/scientific-look-design-aesthetically-emotionally/49539?camid=4v1a