How does a team use a computer-mediated technology to share and reuse knowledge when
the team is inter-organizational and virtual, when the team must compete for the attention
of team members with collocated teams, and when the task is the creation of a completely
new innovation? From a review of the literature on knowledge sharing and reuse using
collaborative tools, three propositions are generated about the likely behavior of the team
in using the collaborative tool and reusing the knowledge put in the knowledge repository.
A multi-method longitudinal research study of this design team was conducted over its ten-
month design effort. Both qualitative and quantitative data were obtained. Results
indicated that the propositions from the literature were insufficient to explain the behavior
of the team. We found that ambiguity of the task does not determine use of a collaborative
tool; that tool use does not increase with experience; and that knowledge that is perceived
as transient (whether it really is transient or not) is unlikely to be referenced properly for
later search and retrieval. Implications for practice and theory are discussed.

Copyright © 2000, Idea Group Publishing.
completely new innovation?

This is an important set of interrelated questions because of the increasing use of virtual interorganizational collaboration and the development and diffusion of collaborative technologies (CT) to facilitate the collaboration process (Allen and Jarman 1999; Coleman 1997; Haywood, 1998; Lipnack and Stamps, 1997). Dow, Ford, Chrysler and British Petroleum are well-known examples of companies diffusing CTs to facilitate their work (Ferranti 1997; Hamblen 1998). A Gartner Group (1997) study went as far as to say: “Real-time collaboration use will change from virtually nothing to ubiquity by 1999” (p.26).

The use of CTs is fundamental to making virtual teams work. A CT, also referred to as a virtual workplace, should be able to record, at a minimum, the process of the group, an agenda, libraries of solutions and practices, different forms of interaction, meta-information (such as date, sequence, author of contributions), and provide shared information storage, access and retrieval (Ellis et al., 1991; Field, 1996; Ishii et al., 1994; Kling, 1991; Nunamaker et al., 1993, 1995; Romano et al., 1998; Thornton and Lockard, 1994).

Critical, then, for knowledge-sharing and reuse with CTs is that the CT includes not just a mechanism for exchanging information (such as e-mail), but a mechanism for creating a knowledge repository and a mechanism for accessing the knowledge repository. In this chapter, we report results from a 10-month field study of an interorganizational virtual engineering design team and describe how a CT is used with respect to knowledge-sharing. The two questions we address are: (1) When do members of a virtual, distributed, interorganizational team designing an innovative new product use a CT to collaborate? (2) When and how do team members reuse the knowledge once it is shared in the knowledge repository of the CT?

LITERATURE REVIEW AND RESEARCH PROPOSITIONS

The criticality of CTs to collaborative work has been well-recognized in the literature (see Eveland and Bikson, 1989; Galegher and Kraut, 1990; Hiltz and Turoff, 1993; Johansen, 1988, 1992; Olson and Atkins, 1990; Rice and Shook, 1990; Romano et al., 1998; Schrage, 1990). Among the many factors affecting the use of CTs suggested by these studies, two are of primary concern to us in this study: 1) experience with the CT and 2) task being accomplished using the CT.

Experience with a CT is a critical factor because, typically, teams use face-to-face media to share crucial knowledge on the extant norms, habits, and political relationships, in addition to content (Ehrlich, 1987; Kraut et al., 1998; Markus, 1992; Perin, 1991; Rice and Gattiker, 1999; Saunders and Jones, 1990). Over time, however, teams have been observed to gradually adjust to conveying richer information through the collaborative tool (Hiltz and Turoff, 1981; Orlikowski et al., 1995; Walther, 1992).

In addition to experience, studies have also found that not all tasks that a team might undertake to accomplish its objective are best suited for use with CTs. Several theories provide foundations for this perspective: “information richness” theory, “social presence” theory (Daft and Lengel, 1986; Rice, 1984, 1987; Short et al.,1976), and the task
Related Content

Knowledge Management and Systematic Innovation Capability
[www.igi-global.com/article/knowledge-management-and-systematic-innovation-capability/170543?camid=4v1a](www.igi-global.com/article/knowledge-management-and-systematic-innovation-capability/170543?camid=4v1a)

Expanding Bloom’s Two-Sigma Tutoring Theory Using Intelligent Agents: Application to Management Education
[www.igi-global.com/article/expanding-blooms-two-sigma-tutoring-theory-using-intelligent-agents/204971?camid=4v1a](www.igi-global.com/article/expanding-blooms-two-sigma-tutoring-theory-using-intelligent-agents/204971?camid=4v1a)
Facilitating Knowledge Transfer and the Achievement of Competitive Advantage with Corporate Universities: An Exploratory Model Based on Media Richness and Type of Knowledge to be Transferred
M. Suzanne Clinton, Kimberly L. Merritt and Samantha R. Murray (2011). *Global Aspects and Cultural Perspectives on Knowledge Management: Emerging Dimensions* (pp. 329-345). www.igi-global.com/chapter/facilitating-knowledge-transfer-achievement-competitive/54097?camid=4v1a

Communication Security Technologies in Smart Organizations