INTRODUCTION

Breakwaters are coastal structures constructed to shelter a harbour basin from waves. There are two main types: rubble-mound breakwaters, consisting of various layers of stones or concrete pieces of different sizes (weights), making up a porous mound; and vertical breakwaters, impermeable and monolithic, habitually composed of concrete caissons. This article deals with rubble-mound breakwaters.

A typical rubble-mound breakwater consists of an armour layer, a filter layer and a core. For the breakwater to be stable, the armour layer units (stones or concrete pieces) must not be removed by wave action. Stability is basically achieved by weight. Certain types of concrete pieces are capable of achieving a high degree of interlocking, which contributes to stability by impeding the removal of a single unit.

The forces that an armour unit must withstand under wave action depend on the hydrodynamics on the breakwater slope, which are extremely complex due to wave breaking and the porous nature of the structure. A detailed description of the flow has not been achieved until now, and it is unclear whether it will be in the future in view of the turbulent phenomena involved. Therefore
the instantaneous force exerted on an armour unit is not, at least for the time being, amenable to
determination by means of a numerical model of
the flow. For this reason, empirical formulations
are used in rubble-mound design, calibrated on
the basis of laboratory tests of model structures.
However, these formulations cannot take into
account all the aspects affecting the stability,
mainly because the inherent complexity of the
problem does not lend itself to a simple treatment.
Consequently the empirical formulations are used
as a predesign tool, and physical model tests in a
wave flume of the particular design in question
under the pertinent sea climate conditions are de
rigueur, except for minor structures. The physical
model tests naturally integrate all the complexity
of the problem. Their drawback lies in that they
are expensive and time consuming.

In this article, Artificial Neural Networks are
trained and tested with the results of stability
tests carried out on a model breakwater. They are
shown to reproduce very closely the behaviour of
the physical model in the wave flume. Thus an
ANN model, if trained and tested with sufficient
data, may be used in lieu of the physical model
tests. A virtual laboratory of this kind will save
time and money with respect to the conventional
procedure.

BACKGROUND

Artificial Neural Networks have been used in civil
engineering applications for some time, especially
in Hydrology (Ranjithan et al., 1993; Fernando
and Jayawardena, 1998; Govindaraju and Rao,
2000; Maier and Dandy, 2000; Dawson and Wilby,
2001; Cigizoglu, 2004); some Ocean Engineering
issues have also been tackled (Mase et al., 1995;
Tsai et al., 2002; Lee and Jeng, 2002; Medina et
al., 2003; Kim and Park, 2005; Yagci et al., 2005).
Rubble-mound breakwater stability is studied in
Mase et al.’s (1995) pioneering work, focusing on
a particular stability formula. Medina et al. (2003)
train and test an Artificial Neural Network with
stability data from six laboratories. The inputs are
the relative wave height, the Iribarren number and
a variable representing the laboratory. Kim and
Park (2005) compare different ANN models on an
analysis revolving around one empirical stability
formula, as did Mase et al.’s (1995). Yagci et al.
(2005) apply different kinds of neural networks
and fuzzy logic, characterising the waves by their
height, period and steepness.

PHYSICAL MODEL AND ANN MODEL

The Artificial Neural Networks were trained and
tested on the basis of laboratory tests carried out in
a wave flume of the CITEEC Laboratory, Univer-
sity of La Coruña. The flume section is 4 m wide
and 0.8 m high, with a length of 33 m (Figure 1).
Waves are generated by means of a piston-type
paddle, controlled by an Active Absorption System
(AWACS) which ensures that the waves reflected
by the model are absorbed at the paddle.

The model represents a typical three-layer
rubble-mound breakwater in 15 m of water,
crowned at +9.00 m, at a 1:30 scale. Its slopes are
1:1.50 and 1:1.25 on the seaward and leeward
sides, respectively. The armour layer consists in

Figure 1. Experimental set-up
Related Content

Differential Evolution Algorithm with Space Reduction for Solving Large-Scale Global Optimization Problems
[www.igi-global.com/chapter/differential-evolution-algorithm-with-space-reduction-for-solving-large-scale-global-optimization-problems/180967?camid=4v1a](www.igi-global.com/chapter/differential-evolution-algorithm-with-space-reduction-for-solving-large-scale-global-optimization-problems/180967?camid=4v1a)

DPSSEE: A Distributed Proactive Semantic Software Engineering Environment
[www.igi-global.com/chapter/dpssee-distributed-proactive-semantic-software/4868?camid=4v1a](www.igi-global.com/chapter/dpssee-distributed-proactive-semantic-software/4868?camid=4v1a)

A Fine-Grained Stateful Data Analytics Method Based on Resilient State Table
[www.igi-global.com/article/a-fine-grained-stateful-data-analytics-method-based-on-resilient-state-table/202955?camid=4v1a](www.igi-global.com/article/a-fine-grained-stateful-data-analytics-method-based-on-resilient-state-table/202955?camid=4v1a)

On the Cognitive Complexity of Software and its Quantification and Formal Measurement
[www.igi-global.com/article/cognitive-complexity-software-its-quantification/2792?camid=4v1a](www.igi-global.com/article/cognitive-complexity-software-its-quantification/2792?camid=4v1a)