Content Design Patterns for Game-Based Learning

Dennis Maciuszek, University of Rostock, Germany
Sebastian Ladhoff, University of Rostock, Germany
Alke Martens, University of Education Schwäbisch Gmünd, Germany

ABSTRACT

To address the lack of documented best practices in the development of digital educational games, the authors have previously proposed a reference software architecture. One of its components is the rule system specifying learning and gameplay content. It contains quest, player character, non-player character, environment, and item rules. Documented content design patterns can assist in the authoring of such rules. This paper reports on four studies that have collected quest, character, environment, and item design patterns by analyzing a variety of media. A selection of the results is presented, as well as a discussion of how the patterns can be used in designing educational game content.

Keywords: Character Design, Cognitive Tool, Collaborative Environment, Design Patterns, Digital Educational Games, Game-Based Learning, Game Design, Interactive Storytelling, Scripts, Quest

INTRODUCTION

When computer scientists look at the field of game-based learning, they investigate existing systems, their implementations and software architectures. One goal of system comparison and analysis is to find design patterns, which can be described as typical best-practice solutions (Alexander et al., 1977; Gamma, Helm, Johnson, & Vlissides, 1994). These are useful for system design because they are application-independent, or as the basis for interdisciplinary project work (Martens, Hambach, & Lucke, 2009) because they are easy to communicate.

Regarding the system design aspect, we have previously demonstrated that the fundamental software design pattern behind user-adaptive eLearning software also known as Intelligent Tutoring Systems (Harrer & Martens, 2007) can be transferred to adaptive educational games, in particular the genre of computer role-playing games (RPGs). Links between eLearning conventions and game design conventions are important to implement a seamless integration of learning and gameplay (or to reduce discrepancies between these). Our observations led to a software architecture we have proposed (Maciuszek & Martens, 2011) for the development of adaptive educational games. Its design is described in Figure 1.

DOI: 10.4018/ijgbl.2011070105
The main idea is that the in-game character sheet describing the player’s avatar (or player character, short: PC) can act as a learner model, which is the basis for adaptation in Intelligent Tutoring. In a narrative game, the user interface part becomes a virtual world, and the pedagogical process steering component of an Intelligent Tutoring System can be mapped to a drama manager, i.e.: the interactive storytelling component (e.g. Crawford, 2005). Expert knowledge is represented in the rule system of the game.

On the implementation level, the four semantic components (grey boxes in Figure 1) are divided into communicating modules (rectangles in Figure 1). Rule system modules provide interfaces to the content data. For example, content data can consist of authored specifications of interactive adventures and more general rules detailing what a PC can be, do, and learn. Similar to Howard’s (2008) analysis of narrative games, we divided adventure-related rules into four modules relating to quests, non-player characters (NPCs), environments, and items.

Content data is the place where software engineers and instructional and game designers meet and do interdisciplinary project work. A special type of patterns – content design patterns – promises to be of great help here. Semi-formal documentation of successful interactive, educational stories and game mechanisms can inspire the content designer to create meaningful learning experiences, while the software designer obtains specifications that are straightforward to implement.

This article provides an overview of four studies in which we collected and documented quest design patterns, character design patterns, environment design patterns, and item design patterns. The following four sections detail objectives, method, and results of each respective study, and point out how to use the results for the design of educational game content. We conclude by identifying future work and giving an example on how to combine patterns of all four kinds.

QUEST DESIGN PATTERNS

Educational games that go beyond simple quizzes and puzzle games are usually narrative. They use storytelling as a key to entertainment, but also for educational purposes. Stories support learning by linking learning activities to meaningful experiences. Through this process, they anchor knowledge in the learner’s episodic memory (Kritzenberger, 2005). According to Schank (1995), human knowledge is actually represented in the form of stories.

Today’s game designers know how to craft meaningful stories of epic proportions. The Hero’s Journey (Campbell, 1949; Vogler, 1998), a universal storyline rooted in the myths of many cultures, is a commonly applied model (Rollings & Adams, 2003; Bates, 2004; Gö-
16 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: www.igi-global.com/article/content-design-patterns-game-based/56315?camid=4v1

Related Content

Leveraging Mobile Games for Place-Based Language Learning
Christopher L. Holden and Julie M. Sykes (2011). International Journal of Game-Based Learning (pp. 1-18).
www.igi-global.com/article/leveraging-mobile-games-place-based/53831?camid=4v1a

Minecraft as a Creative Tool: A Case Study
Maria Cipollone, Catherine C. Schifter and Rick A. Moffat (2014). International Journal of Game-Based Learning (pp. 1-14).
www.igi-global.com/article/minecraft-as-a-creative-tool/116516?camid=4v1a
Using Biometric Measurement in Real-Time as a Sympathetic System in Computer Games
Stephanie Charij and Andreas Oikonomou (2013). *International Journal of Game-Based Learning* (pp. 21-42).
www.igi-global.com/article(using-biometric-measurement-in-real-time-as-a-sympathetic-system-in-computer-games/95080?camid=4v1a

Playing in the Virtual Sandbox: Students’ Collaborative Practices in Minecraft
www.igi-global.com/article(playing-in-the-virtual-sandbox/206859?camid=4v1a