Chapter 11

Benefits of CMM and CMMI-Based Software Process Improvement

Maged Abdullah
University of Malaya, Malaysia

Rodina Ahmad
University of Malaya, Malaysia

Lee Sai Peek
University of Malaya, Malaysia

Zarinah Mohd Kasirun
University of Malaya, Malaysia

Fahad Alhammari
University of Malaya, Malaysia

ABSTRACT

Software Process Improvement (SPI) has become the survival key of numerous software development organizations who want to deliver their products cheaper, faster, and better. A software process ultimately describes the way that organizations develop their software products and supporting services; meanwhile, SPI on the other hand, is the act of changing the software process and maintenance activities. This chapter purposefully describes the benefits of software process improvement. The Capability Maturity Model (CMM) and the Capability Maturity Model Integration (CMMI) are briefly surveyed and extensively discussed. Prior literature on the benefits and impacts of CMM and CMMI-based software process improvement is also highlighted.

DOI: 10.4018/978-1-61350-141-2.ch011
INTRODUCTION

A new set of ideas on how to enhance the productivity and quality in software development organizations has emerged over the last decade under the term of Software Process Improvement (SPI) (Aaen, Arent, Mathiassen, & Ngwenyama, 2001). SPI has become the survival key of numerous software development organizations who want to deliver their products cheaper, faster, and better. A software process ultimately describes the way that organizations develop their software products and supporting services. Processes define what kind of steps the software development organizations should undertake at each phase of production and provide assistance in making good effort and schedule estimates, measuring quality, and developing plans (Gerry & Rory, 2007). Rico (2004) defines the software process improvement as “an approach to designing and defining a new and improved software process to achieve basic business goals and objectives.” SPI is simply the act of changing the software process and maintenance activities. The aims are normally to decrease costs, increase efficiency, and also to increase profitability. For instance, SPI could be employed to create a new and enhanced process for software development organizations.

There is a widespread belief that a good software product is a result of mature and repeatable software processes, which have led to more focus on SPI to assist software development organizations realize its potential benefits. Thus, the search for new methodologies, ideas and innovations to enhance software development continues to be an essential focus for both academic and industrial research. In order to improve software development practices, many attempts have concentrated on defining, measuring, and monitoring development activities in an effort to identify and verify improvement areas. These attempts have led to the emergence of the term Process Model. A Process Model is defined as “a structured collection of practices that describe the characteristics of effective processes” (SEI, 2007). An organization can define a process improvement priorities and objectives and make its processes capable, stable, and mature by the help of a process model. Moreover, a process model provides a guideline for an organization to realize its current state; also to identify relevant improvement activities and to identify how to start these activities (SEI, 2007).

Effort spent in this area has resulted in several SPI models and standards such as Personal Software Process (PSP), Team Software Process (TSP)(Humphrey, 1995), ISO 9001 (Paulk, 1995), Six Sigma (Pyzdek, 2003) and the Carnegie Mellon Software Engineering Institute’s Capability Maturity Model for Software (SW-CMM) (Paulk, Weber, Curtis, & Chrissis, 1995) and its most recent version, the Capability Maturity Model Integration (CMMI) (Chrissis, Konrad, & Shrum, 2007). The motivation for selecting CMM and CMMI as the base of this chapter is that they are influential, long-standing, and often-studied standard to SPI (Staples & Niazi, 2008). Moreover, CMMI-based SPI has led to quantifiable enhancement in how processes of software engineering are performed (Bollinger & McGowan, 2009). According to Jones and Soule (2002), among the software process improvement frameworks, CMMI became a standard model with high rate of acceptance.

This chapter is organized as follows; a brief introduction of software process improvement is introduced in Section 1. Section 2 describes the benefits of software process improvement. The Capability Maturity Model (CMM) and the Capability Maturity Model Integration (CMMI) are briefly surveyed in Section 3. Section 4 extensively discusses numerous prior literatures on the benefits and impacts of CMM and CMMI-based software process improvement. Section 5 gives a summary of this chapter. Finally, Section 6 presents our conclusions and recommendations.
Related Content

Assessing the Usefulness of Testing for Validating and Correcting Security Risk Models Based on Two Industrial Case Studies
www.igi-global.com/article/assessing-the-usefulness-of-testing-for-validating-and-correcting-security-risk-models-based-on-two-industrial-case-studies/136468?camid=4v1a

Fault-Tolerant Protocols Using Aspect Orientation
www.igi-global.com/chapter/fault-tolerant-protocols-using-aspect/5127?camid=4v1a

Combining Model Inference and Passive Testing in the Same Framework to Test Industrial Systems

Cultural Diversity Challenges: Issues for Managing Globally Distributed Knowledge Workers in Software Development
www.igi-global.com/chapter/cultural-diversity-challenges/29518?camid=4v1a