Hybrid Tabu Search Hopfield Recurrent ANN Fuzzy Technique to the Production Planning Problems: A Case Study of Crude Oil in Refinery Industry

Pandian Vasant, Petronas University of Technology, Malaysia
Timothy Ganesan, Petronas University of Technology, Malaysia
Irraivan Elamvazuthi, Petronas University of Technology, Malaysia

ABSTRACT

The fuzzy technology reveals that everything is a matter of degree. At the moment, many industrial production problems are solved by operational research optimization techniques, under the considerations of some real assumptions. In this paper, the authors have several applications of fuzzy linear, non-linear, non-continues and other mathematical programming applications. The prime objective of this paper is to investigate a new application to the literature and to solve the crude oil refinery production problem by using the hybrid optimization techniques of Tabu Search (TS), Hopfield Recurrent Artificial Neural Network (HRANN) and fuzzy approaches. In application, the real world problem of refinery model has been developed and thorough comparative studies have been carried on varies optimization techniques. The final results and findings reveal that, the hybrid optimization technique provides better, robust, efficient, flexible and stable solutions.

Keywords: Crude Oil Refinery Production, Fuzzy Technology, Hopfield Recurrent Artificial Neural Network (HRANN), Hybrid Optimization Techniques, Tabu Search

INTRODUCTION

The first and meaningful momentum towards the mathematical formalization of fuzziness pioneered by Zadeh (1965) is in its progress now (Orlovsky, 1980) when numerous attempts are being made to explore the ability of the fuzzy set theory to become a useful tool for adequate mathematical analysts of real-world situations. From 1965 to 1977, fuzzy theory was developed and often referred to as the academic phase. The outcome was rather a small number
of publications of a predominantly theoretical nature by a few contributors, mainly from the academic people. At this time, not much work in the area of fuzzy decision making was reported.

From 1978 to 1988, this period was called as the transformation phase where by significant advances in fuzzy set theory was developed and some successful practical real life problems were solved. In this period, some important principles in fuzzy set theory and its applications were established. But, work on fuzzy decision was still very small in number and not much publication was found in the area of engineering applications. Some of earlier works on fuzzy decision making can be found in Kickert (1978) and Zimmermann (1987).

The period from 1989 onwards was considered as the fuzzy boom period. In this period, tremendous application problems in industrial and business were tackled successfully. In early 1990s, fuzzy technique was used as ingredient to some soft computing problems. The aim of soft computing is to exploit, whenever possible, the tolerance for imprecision and uncertainty in order to achieve computational tractability, robustness, and low cost, by methods that produce acceptable approximation solutions to complex problems which are often not precisely solved.

Currently fuzzy technique is very much applied in the field of decision making. Fuzzy methods have been developed in virtually all branches of decision making, including multi-objective, multi-person, and multi-stage decision making (Tamiz, 1996). Apart from these, other research work connected to fuzzy decision making are applications of fuzzy theory in management, business and operational research (Zimmermann, 1991). Some of publications in Fuzzy Linear Programming (FLP) area in decision making can be found in Ross (1995), Klar and Yuan (1995), Yager, Ovehinnikov, Tong, and Nguyen (1987), Zimmermann (1985), and Dubois and Prade (1980).

In this research paper, application of fuzzy linear programming in decision making is considered. A hybrid optimization technique of Tabu search Hopfield Recurrent Artificial Neural Network is used to solve the fuzzy decision making problems in crude oil refinery industry. A modified logistic function (Watada, 1997) has been used to describe vagueness factor in the crude oil decision variables. This function is used in FLP problems to encourage an interaction among the decision maker, the analyst and the implementer. Considerable attention has been given earlier to solve FLP problem in various other approaches. Membership function such as exponential (Carlsson & Korhonen, 1986; Watada, 1997), Hyperbolic (Zimmermann, 1978) and trapezoidal (Luhandeljula, 1986) have been employed in solving FLP problems in the area of engineering, science, management, economics and finance.

In the above mentioned applications, it is often difficult to determine with precision various coefficients in a problem because they are either specified subjectively by the decision maker or they are given through procedures requiring subjective answers to questions posed by analysts. Therefore, to deal with imprecise data, a fuzzy interval can be used. Some attempts in this direction on defining fuzzy intervals may be found where coefficients of the criteria are given by intervals (Bitran, 1980; Jiuping, 2000; Sengupta, Pal, & Chakroborthy, 2001).

Decision making is probably the most important and popular aspect of application of mathematical methods in various fields of human activity. In real-world situations, decisions are nearly always made on the basis of information which is at least in part fuzzy in nature.

In some cases fuzzy information is used as an approximation to probably more rigorous information. This form of approximation appears to be quite convenient and sufficient for making good enough decision. In other cases, fuzzy information is the only form of information available.

The first step in mathematically tackling a practical decision-making problem consists of formulating a suitable mathematical model of a system or a situation. If we intend to make reasonably adequate mathematical models of such situation to help practicing decision maker in searching for rational decisions, we should be able to introduce fuzziness into our models.
17 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:
www.igi-global.com/article/hybrid-tabu-search-hopfield-recurrent/62579?camid=4v1

www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content
Geometrically Non-Linear Frequency Response of Axially Functionally Graded Beams Resting on Elastic Foundation Under Harmonic Excitation

Characterization of Mechanical Properties and the Abrasive Wear of Thermal Spray Coatings
www.igi-global.com/chapter/characterization-of-mechanical-properties-and-the-abrasive-wear-of-thermal-spray-coatings/128079?camid=4v1a
Novel Approaches to Prediction of a Future Number of Failures Based on Previous In-Service Inspections
www.igi-global.com/chapter/novel-approaches-to-prediction-of-a-future-number-of-failures-based-on-previous-in-service-inspections/195225?camid=4v1a

Capillary Tube as an Expansion Device in a CO2 (R744) Transcritical Heat Pump System
www.igi-global.com/chapter/capillary-tube-as-an-expansion-device-in-a-co2-r744-transcritical-heat-pump-system/136753?camid=4v1a