Chapter 3
Self Control and Server–Supervisory Control for Multiple Mobile Robots, and its Applicability to Intelligent DNC System

F. Nagata
Tokyo University of Science, Japan

T. Yamashiro
Tokyo University of Science, Japan

N. Kitahara
Tokyo University of Science, Japan

A. Otsuka
Tokyo University of Science, Japan

K. Watanabe
Okayama University, Japan

Maki K. Habib
The American University in Cairo, Egypt

ABSTRACT
Multiple mobile robots with six PSD (Position Sensitive Detector) sensors are designed for experimentally evaluating the performance of two control systems. They are self-control mode and server-supervisory control mode. The control systems are considered to realize swarm behaviors such as Ligia exotica. This is done by using only information of PSD sensors. Experimental results show basic but important behaviors for multiple mobile robots. They are following, avoidance, and schooling behaviors. The collective behaviors such as following, avoidance, and schooling emerge from the local interactions among the robots and/or between the robots and the environment. The objective of the study is to design an actual
Self Control and Server-Supervisory Control for Multiple Mobile Robots

INTRODUCTION

Swarm robotics originally initiated from biological and nature studies and the advances made in the field of swarm intelligence. Recently, many research studies on swarm robotics have been conducted, in which the aim focuses on the realization of complex task ability and complex behaviors from simple rules and simple design by establishing enabling interaction, coordination and cooperation functionalities between large numbers of physically simple robots. The research in the area of swarm robotics includes the design of robots, their physical body, simulation, scalability, and their collective behaviors that emerge through real time interaction. Cost and miniaturization are key parameters in the development of swarm robotics. Future and emergence progress in the field and the development of concrete and potential applications like in micromachinery, human body, rescue, mining, agriculture forging task, etc. are under consideration by many research groups. It is important to notice that the characteristics of self-organization describe changes in the structure of a multiple mobile robot team as a function of its experience and interaction with its environment. Hence, self-organization capability is highly demanded for swarm of robots. Researchers in the field are inspired by the behavior of animals and insect societies such as colonies of ants, wasps, termites, flocks of birds, schools of fish, to develop different structures, organization, configuration, and interaction capabilities among members of a multi robotic system.

As for the studies focusing on multiple mobile robots, Fok and Kabura introduced a flexible multiple mobile robots system (Fok & Kabuka, 1992). The mobile robots were capable of performing their own path planning and collision avoidance by means of ultrasonic sensors, standard patterns, and rotary optical encoders. The designed algorithms for the mobile robot and local controller were presented. Simeon et al. presented an efficient geometry-based approach for multiple mobile robot motion coordination, in which a new model was derived from a bounding-box representation of the obstacles in the elementary 2-D diagrams (Simeon et al., 2002). In addition, Clark et al. proposed a new approach to multi-robot motion planning which was based on the concept of planning within dynamic robot networks (Clark et al., 2003). The system enabled multiple mobile robots with limited ranges of sensing and communication to manoeuvre safely in dynamic and unstructured environments.

In this chapter, multiple mobile robots each with six PSD (Position Sensitive Detector) sensors are designed for experimentally evaluating the performance of two control systems (Yamashiro & Nagata, 2010; Yamashiro et al., 2011). They are self-control mode and server-supervisory control mode. The PSD sensor is a kind of photo sensors. For example, the control system behavior aims to realize swarm behavior of Ligia exotica as shown in Figure 1. This is done by using only information of PSD sensors. Many organisms, who develop group formation behavior, live in many parts of earth. Ligia exotica is one of such organisms that