INTRODUCTION
The problem of wave propagation in deformable shells with flowing fluid in their cavities is quite popular. When considering the problems of this kind it should be encouraged to consider the equations of motion cover, considering the effect of moving the liquid in it. It is assumed that one-dimensional approximation is applicable when the tube length is much greater than its radius. Such approximation describes the basic properties of the “cover-fluid”. To date, the aggregate of such problems is well developed area of fluid dynamics (Lightfoot, 1977; Pedley, 1983). However, the mechanism of the phenomena associated with simultaneous consideration of two-phase fluid in the compartment considering its compressibility, viscosity and orthotropy of the material tube, is not well understood. The interest in problems of wave dynamics of bubbly liquids flowing in deformable tubes is due to the importance of application of research results to problems in calculating the hydraulic systems in aircrafts, oil and gas industry, chemical technology, thermodynamics (Skalak, 1956; Suo & Wylie, 1990). Fluid–structure interaction (FSI) problems arise in industrial piping systems, underwater explo-
sions and turbomachinery (Cole, 1948; Wylie & Streeter, 1993; Brennen, 1994). These flows often involve gas (or vapour) bubbles that alter the dynamics of the fluid dramatically (Brennen, 1995, 2005). Dynamic loading of fluid-filled, deformable tubes have been extensively studied as an FSI model problem (Tijsseling, 1996; Gha-"daoui et al., 2005). Liquid-oiled tubes were ïrst studied by (Korteweg, 1878) and (Joukowsky, 1898), who introduced a linear wave speed that accounts for the compressibility of both the liquid and the structure. The Korteweg–Joukowsky wave speed is also known as the Moens–Korteweg wave speed in a biomedical context concerning pressure pulses through blood vessels (Pedley, 1980). The wave speed in the case of bubbly liquids was later validated by Kobori, Yokoyama, and Miyashiro (1955).

For cases without FSI, shock problems in bubbly liquids have also been considered by many researchers. The shock theory has been validated by experiments (Campbell & Pitcher, 1958; Noordzij & van Wijngaarden, 1974; Beylich & Gülhan, 1990; Kameda & Matsumoto, 1996; Kameda et al., 1998). In these experiments, bubbly mixtures were created in a tube, but the shock pressure was small enough to minimize the FSI effect. The detailed shock structure was also confirmed by computations (Kuznetsov et al., 1978; Nigmatulin, Khabeev, & Hai, 1988; Watanabe & Prosperetti, 1994; Kameda & Matsumoto, 1996; Kameda et al., 1998; Delale, Nas, & Tryggvason, 2005; Delale & Tryggvason, 2008). However, to the authors’ knowledge, a (nonlinear) shock theory that includes both structural compressibility and bubbles has not been presented so far (Smereka, 2002; Yates, & Satterfield, 1991; Zhang & Prosperetti, 1994).

tions and turbomachinery (Cole, 1948; Wylie & Streeter, 1993; Brennen, 1994). These flows often involve gas (or vapour) bubbles that alter the dynamics of the fluid dramatically (Brennen, 1995, 2005). Dynamic loading of fluid-filled, deformable tubes have been extensively studied as an FSI model problem (Tijsseling, 1996; Ghi-"daoui et al., 2005). Liquid-oiled tubes were ïrst studied by (Korteweg, 1878) and (Joukowsky, 1898), who introduced a linear wave speed that accounts for the compressibility of both the liquid and the structure. The Korteweg–Joukowsky wave speed is also known as the Moens–Korteweg wave speed in a biomedical context concerning pressure pulses through blood vessels (Pedley, 1980). The wave speed in the case of bubbly liquids was later validated by Kobori, Yokoyama, and Miyashiro (1955).

For cases without FSI, shock problems in bubbly liquids have also been considered by many researchers. The shock theory has been validated by experiments (Campbell & Pitcher, 1958; Noordzij & van Wijngaarden, 1974; Beylich & Gülhan, 1990; Kameda & Matsumoto, 1996; Kameda et al., 1998). In these experiments, bubbly mixtures were created in a tube, but the shock pressure was small enough to minimize the FSI effect. The detailed shock structure was also confirmed by computations (Kuznetsov et al., 1978; Nigmatulin, Khabeev, & Hai, 1988; Watanabe & Prosperetti, 1994; Kameda & Matsumoto, 1996; Kameda et al., 1998; Delale, Nas, & Tryggvason, 2005; Delale & Tryggvason, 2008). However, to the authors’ knowledge, a (nonlinear) shock theory that includes both structural compressibility and bubbles has not been presented so far (Smereka, 2002; Yates, & Satterfield, 1991; Zhang & Prosperetti, 1994).

Mathematical Model of the Fluid

Biphasic mediums consisting of a mixture of liquid with tiny bubbles of gas are very important example of the relaxing environment. Experimental and theoretical studies have shown that when solving the problem of transporting of the two-phase liquid-gas flows, it should be kept in mind that such environments are different from other two-phase media. The difference is that the heat of the carrier phase is much higher than the heat capacity of the dispersed phase due to the prevailing mass content of the carrier phase in the volume unit. Therefore, the liquid can be regarded as a thermostat with constant temperature (Nigmatulin, 1987). Methods of continuum mechanics have been used in the basis of the theory used to describe the flows of bubbly mixtures (Nigmatulin, 1987). We establish the following hypotheses and assumptions that greatly simplify the formulation and solution of the problem, without altering the essence of the phenomenon:

- Bubbles are present in the form of spherical inclusions of the same radius r_0 in every elementary macro-volume. Furthermore, the volume of concentration of bubbles α_{20} is low (a mixture of mono-disperse) and the value r_0 is much smaller than the characteristic size of the problem;
- Direct interaction and collision of bubbles with each other can be ignored;
- Merge processes (coagulation), fragmentation and formation of new bubbles are absent;
- Velocity of the bubbles and carrier phases are the same;
- Bubbles have neutral buoyancy, i.e., do not settle down and do not float up;
- Viscosity of the carrier phase is much greater than the viscosity of the gas bubbles (such as the viscosity of water is 10 times greater than the viscosity of air) and, therefore the viscosity of the mixture practically does not depend on the volume fraction of bubbles.

METHOD

Basic Relations of the Problem

Closed system of equations consists of hydro equations of fluid motion and tubes, as well as the equations components’ velocity continuity on the border of the interface of the liquid and tube.
The Dispersion Effect of Carbon Nanotubes on the Viscoelastic Properties of Epoxy by Perez Model
