Chapter 7
Ethical Issues in Writing

ABSTRACT

In this chapter, many ethical considerations are discussed when it comes to technical writing. One of the things that discussed is the moral and social responsibilities of scientists. That section describes the moral responsibilities of being honest in research and why it is a grave ethical violation to forge results. Regarding social responsibility, the chapter examines the issue of speaking out when one believes an ethical violation has been committed, such as when results reported are untrue or dangerous. The author included a section on the responsibility of authors to their coauthors. While working together, authors must have a way to communicate effectively and express their ideas. Once a project is agreed to and commitments are made, coauthors have a moral and ethical responsibility to follow through on such commitments.

MORAL AND SOCIAL RESPONSIBILITIES OF SCIENTISTS

Writers are conveyors of information and as such we have responsibilities to our readers. We must follow a certain code of ethics and be honest with our readers. As professionals and scientists, we must be careful to explain the assumptions underlying our work and the applications of our work. We must be careful not to misrepresent our research or mislead our audience. An example that exemplifies what is considered unethical is when in 2005 a researcher from South Korea named Woo Suk Hwang fraudulently reported to having created human-embryonic stem cells through cloning (Cyranoski, 2009). Hwang falsified data and was convicted of embezzlement and bioethical violations. As another example, in early 2010 a foreman was ordered by his company to fake safety-inspection reports so that evacuations of a mine could be avoided even when methane levels were dangerously high in the mine (Smith,
Clearly, this falsifying of information is extremely serious and could result in people suffering injuries and in some cases even death. Most professions have a code of ethics that needs to be followed, and we described one such code from the ACM earlier in this book. Such codes often provide steps for dealing with and reporting ethical violations. The man who was asked to fake safety inspections reportedly was so distressed that he suffered from panic attacks due to the unethical nature of the situation. Unfortunately, there are many other similar cases of ethical violations to be found in the literature.

Other topics that we cover in this chapter involve citing other work, plagiarism, copyright, permissions, and credit issues. For example, if a writer wants to include a copy of an image in a given work, permission needs to be obtained from the owner of the image, and often a fee must be paid to the owner. In referencing material that is not original, one must cite the other work, so that the original author is given proper credit and no one accidentally attributes the work to the borrowing author who is merely using the original work. We try to include practical tips throughout the chapter, so that a reader can immediately apply this material to one’s own situation. Let us begin by looking at the moral and social responsibilities of scientists.

When one thinks of morality, one usually thinks of the principles involved in doing the ‘right thing.’ A philosophical discussion about morality is beyond the scope of this book. However, more or less by definition, the majority of people in a society know what the expression the ‘right thing’ means. And, most people know the difference between right and wrong even if they do not always act in a fair and just manner. As writers, scientists, professionals, and contributing members of society, we have an obligation to others to present only accurate and verifiable information. Misrepresentation or falsifying information could endanger lives. Therefore, scientists must uphold the highest standards of ethical conduct. Under no circumstance should one intentionally mislead others or provide false information.

Let us consider the IT professional who is working on a virus-detection software product. The public relies on and to a certain extent trusts such a professional to do the right thing. If a programmer knows there are flaws in a virus-detection system, the flaws should be reported. The public should not be led to believe that a piece of software is secure if in fact the software has known problems. People count on and trust companies to produce reliable products that perform their advertised features. When that trust is broken, the reputation of an individual, a company, or even an entire discipline can be damaged. If one utilizes a program, which for example is advertised to give 100% protection against the Macro XYZ virus, one expects to be completely protected from the XYZ virus. If a programmer knows that there are cases where the XYZ virus is not defended against, the programmer should report this fact. It would be unethical not to report this fact. Users make decisions to use products based on how they are advertised. The economic cost of downtime due to infected machines could be huge. And, further, if those machines were monitoring life-support systems, the cost of downtime could be immeasurable.

Information-technology professionals and other scientists are often seen as role models in society. Thus they need to uphold the highest moral and ethical standards. Role models need to do the right thing or the moral fabric of society could start to unravel. Because of the leadership role placed on many information-technology professionals and other scientists due to their jobs and high levels of education, one must be prepared to accept the added social responsibility of acting with the highest-possible moral and ethical standards. If unable, one cannot live up to the social responsibilities of the profession. And, by acting in an immoral or unethical manner, an individual diminishes the overall trust that society has given to people working in these professions. Thus one
Related Content

Power System Operator Certification: A Case Study for India
www.igi-global.com/chapter/power-system-operator-certification/73756?camid=4v1a

Corporate Ethics and Corporate Social Responsibility in Reinforcing Consumers Bonding: An Empirical Study in Controversial Industry

Virtual Learning Environments for Manufacturing
Hamed F. Manesh and Dirk Schaefer (2010). *Virtual Environments for Corporate Education: Employee Learning and Solutions* (pp. 89-109).
www.igi-global.com/chapter/virtual-learning-environments-manufacturing/42232?camid=4v1a

Curriculum Initiatives to Help Engineering Students Learn and Develop
www.igi-global.com/chapter/curriculum-initiatives-help-engineering-students/70023?camid=4v1a