Clean Energies for Sustainable Development in Built Environment

Abdeen Mustafa Omer, Energy Research Institute (ERI), UK

ABSTRACT

The move towards a de-carbonised world, driven partly by climate science and partly by the business opportunities it offers, will need the promotion of environmentally friendly alternatives, if an acceptable stabilisation level of atmospheric carbon dioxide is to be achieved. This requires the harnessing and use of natural resources that produce no air pollution or greenhouse gases and provides comfortable coexistence of human, livestock, and plants. The increased availability of reliable and efficient energy services stimulates new development alternatives. This paper focuses on and presents a comprehensive review of energy sources, and the development of sustainable technologies to explore these energy sources. The author investigates the potential renewable energy technologies, efficient energy systems, energy savings techniques and other mitigation measures necessary to reduce climate changes.

Keywords: Built Environment, Climate Change, Coexistence, Renewable Energy Technologies, Sustainable Development

INTRODUCTION

Over millions of years ago, the plants have covered the earth converting the energy of sunlight into living plants and animals, some of which were buried in the depths of the earth to produce deposits of coal, oil and natural gas (Cantrell & Wepfer, 1984; ASHRAE, 1995; Kavanaugh & Rafferty, 1997). The past few decades, however, have experienced many valuable uses for these complex chemical substances and manufacturing from them plastics, textiles, fertilisers and the various end products of the petrochemical industry. Indeed, each decade seeks increasing uses for these products. Coal, oil and gas, which will certainly be of great value to future generations, as they are to ours, are however non-renewable natural resources. The rapid depletion of these non-renewable fossil resources need not continue. This is particularly true now as it is, or soon will be, technically and economically feasible to supply all of man’s needs from the most abundant energy source of all, the sun. The sunlight is not only inexhaustible, but, moreover, it is the only energy source, which is completely non-polluting (UNFCCC, 2009).

Industrial use of fossil fuels has been largely blamed for warming the climate. When coal, gas and oil are burnt, they release harmful gases, which trap heat in the atmosphere and cause
global warming. However, there had been an ongoing debate on this subject, as scientists have struggled to distinguish between changes, which are human induced, and those, which could be put down to natural climate variability. Notably, human activities that emit carbon dioxide (CO₂), the most significant contributor to potential climate change, occur primarily from fossil fuel production. Consequently, efforts to control CO₂ emissions could have serious, negative consequences for economic growth, employment, investment, trade and the standard of living of individuals everywhere (Rees, 1999).

ENERGY SOURCES AND THEIR USE

Scientifically, it is difficult to predict the relationship between global temperature and greenhouse gas (GHG) concentrations. The climate system contains many processes that will change if warming occurs. Critical processes include heat transfer by winds and tides, the hydrological cycle involving evaporation, precipitation, runoff and groundwater and the formation of clouds, snow, and ice, all of which displaying enormous natural variability. The equipment and infrastructure for energy supply and use are designed with long lifetimes, and the premature turnover of capital stock involves significant costs. Economic benefits occur if capital stock is replaced with more efficient equipment in step with its normal replacement cycle. Likewise, if opportunities to reduce future emissions are taken in a timely manner, they should be less costly. Such a flexible approach would allow society to take account of evolving scientific and technological knowledge, while gaining experience in designing policies to address climate change (UNFCCC, 2009).

The World Summit on Sustainable Development in Johannesburg in 2002 (UNFCCC, 2009) committed itself to “encourage and promote the development of renewable energy sources to accelerate the shift towards sustainable consumption and production”. Accordingly, it aimed at breaking the link between resource use and productivity. This can be achieved by the following:

- Trying to ensure economic growth does not cause environmental pollution.
- Improving resource efficiency.
- Examining the whole life-cycle of a product.
- Enabling consumers to receive more information on products and services.

Examining how taxes, voluntary agreements, subsidies, regulation and information campaigns, can best stimulate innovation and investment to provide cleaner technology.

The energy conservation scenarios include rational use of energy policies in all economy sectors and the use of combined heat and power systems, which are able to add to energy savings from the autonomous power plants. Electricity from renewable energy sources is by definition the environmental green product. Hence, a renewable energy certificate system, as recommended by the World Summit, is an essential basis for all policy systems, independent of the renewable energy support scheme. It is, therefore, important that all parties involved support the renewable energy certificate system in place if it is to work as planned. Moreover, existing renewable energy technologies (RETs) could play a significant mitigating role, but the economic and political climate has to be changed first. It is now universally accepted that climate change is real. It is happening now, and GHGs produced by human activities are significantly contributing to it. The predicted global temperature increase between 1.5 and 4.5°C could lead to potentially catastrophic environmental impacts (United Nations, 2003). These include sea level rise, increased frequency of extreme weather events, floods, droughts, disease migration from various places and possible stalling of the Gulf Stream. This has led scientists to argue that climate change issues are not ones that politicians can afford to ignore, and policy makers tend to agree (United Nations, 2003). However, reaching international agreements on
14 more pages are available in the full version of this
document, which may be purchased using the "Add to Cart"
button on the product's webpage:

www.igi-global.com/article/clean-energies-sustainable-
development-built/64360?camid=4v1

This title is available in InfoSci-Journals, InfoSci-Journal
Disciplines Engineering, Natural, and Physical Science,
InfoSci-Civic Engagement, Sustainable Planning, and Crisis
Response eJournal Collection, InfoSci-Journal Disciplines
Computer Science, Security, and Information Technology.

Recommend this product to your librarian:

www.igi-global.com/e-resources/library-
recommendation/?id=2

Related Content

Application of Quantitative Methods in Natural Resource Management in Africa: A Review
www.igi-global.com/chapter/application-of-quantitative-methods-in-natural-resource-management-in-africa/94968?camid=4v1a

A New Perspective on Performance in Indian Microfinance Institutions: An Empirical Study
www.igi-global.com/article/a-new-perspective-on-performance-in-indian-microfinance-institutions/147617?camid=4v1a
The Role of Suppliers in the Greening of GVCs: Evidence from the Sri Lankan Apparel Industry
www.igi-global.com/chapter/the-role-of-suppliers-in-the-greening-of-gvcs/157903?camid=4v1a

A Case Study on the Socio-Economic Conditions of the Artisanal Fisheries in the Cagayan De Oro River
www.igi-global.com/article/a-case-study-on-the-socio-economic-conditions-of-the-artisanal-fisheries-in-the-cagayan-de-oro-river/179633?camid=4v1a