EXECUTIVE SUMMARY

A preliminary feasibility study aboard U.S. Navy ships utilized voice interactive technology to improve medical readiness. A focus group was surveyed about reporting methods in health and environmental surveillance inspections to develop criteria for designing a lightweight, wearable computing device with voice interactive capability. The voice interactive computing device included automated user prompts, enhanced data analysis, presentation and dissemination tools in support of preventive medicine. The device was capable of storing, processing and forwarding data to a server. The prototype enabled quick, efficient and accurate environmental surveillance. In addition to reducing the time needed to complete inspections, the device supported local reporting requirements and enhanced command-level intelligence. Where possible, existing technologies were utilized in creating the device. Limitations in current voice recognition technologies created challenges for training and user interface.
BACKGROUND

Coupling computer recognition of the human voice with a natural language processing system makes speech recognition by computers possible. By allowing data and commands to be entered into a computer without the need for typing, computer understanding of naturally spoken languages frees human hands for other tasks. Speech recognition by computers can also increase the rate of data entry, improve spelling accuracy, permit remote access to databases utilizing wireless technology and ease access to computer systems by those who lack typing skills.

Variation of Speech-to-Text Engines

Since 1987, the National Institute of Standards and Technology (NIST) has provided standards to evaluate new voice interactive technologies (Pallett, Garofolo, & Fiscus, 2000). In a 1998 broadcast news test, NIST provided participants with a test set consisting of two 1.5-hour subsets obtained from the Linguistic Data Consortium. The task associated with this material was to implement automatic speech recognition technology by determining the lowest word error rate (Herb & Schmidt, 1994; Fiscus, 1997; Greenberg, Chang, & Hollenback, 2000; Pallett, 1999). Excellent performance was achieved at several sites, both domestic and abroad (Przybocki, 1999). For example, IBM-developed systems achieved the lowest overall word error rate of 13.5%. The application of statistical significance tests indicated that the differences in performance between systems designed by IBM, the French National Laboratories’ Laboratoire d’Informatique pour la Mechanique et les Sciences de l’Ingenieur and Cambridge University’s Hidden Markov Model Toolkit software were not significant (Pallett, Garfolo, & Fiscus, 2000). Lai (2000) also reported that no significant differences existed in the comprehension of synthetic speech among five different speech-to-text engines used. Finally, speaker segmentation has been used to locate all boundaries between speakers in the audio signal. It enables speaker normalization and adaptation techniques to be used effectively to integrate speech recognition (Bikel, Miller, Schwartz, & Weischedel, 1997).

Speech Recognition Applications

The seamless integration of voice recognition technologies creates a human-machine interface that has been applied to consumer electronics, Internet appliances, telephones, automobiles, interactive toys, and industrial, medical, and home electronics and appliances (Soule, 2000). Applications of speech recognition technology are also being developed to improve access to higher education for persons with disabilities (Leitch & Bain, 2000). Although speech recognition systems have existed for two decades, widespread use of this technology is a recent phenomenon. As improvements have been made in accuracy, speed, portability, and operation in high-noise environments, the development of speech recognition applications by the private sector, federal agencies, and armed services has increased.

Some of the most successful applications have been telephone based. Continuous speech recognition has been used to improve customer satisfaction and the quality of service on telephone systems (Charry, Pimentel, & Camargo, 2000; Goodliffe, 2000; Rolandi, 2000). Name-based dialing has become more ubiquitous, with phone control answer, hang-up, and call management (Gaddy, 2000a). These applications use intuitive
Related Content

A New Contextual Influencer User Measure to Improve the Accuracy of Recommender System
www.igi-global.com/article/a-new-contextual-influencer-user-measure-to-improve-the-accuracy-of-recommender-system/239847?camid=4v1a

The T-1 Auto Inc. Production Part Testing (PPT) Process: A Workflow Automation Success Story
www.igi-global.com/chapter/auto-inc-production-part-testing/6435?camid=4v1a
Capacity for Engineering Systems Thinking (CEST): Literature Review, Principles for Assessing and the Reliability and Validity of an Assessing Tool
www.igi-global.com/chapter/capacity-engineering-systems-thinking-cest/36750?camid=4v1a

Supplier Capabilities and eSourcing Relationships: A Psychological Contract Perspective
www.igi-global.com/chapter/supplier-capabilities-esourcing-relationships/36813?camid=4v1a