Chapter III

Customer Investigation Process at Credit Suisse: Meeting the Rising Demands of Regulators

Daniel Maier, Credit Suisse, Switzerland
Thomas Muegeli, Credit Suisse, Switzerland
Andrea Krejza, Credit Suisse, Switzerland

ABSTRACT

Customer investigations in the banking industry are carried out in connection with prosecutions, the administration of estates or other legal actions. The Investigation & Inquiries Department of Credit Suisse has to handle approximately 5,000 client investigations per year. To date, the investigation process has been very complex, time consuming and expensive. Several redundant query processes are needed to achieve satisfactory results. In the past few years, new regulatory requirements have led to a massive increase in the number of investigations to be performed. This case study describes how these requirements can be met by redesigning the process and building a data-warehouse-based application that automates most of the process. These two measures have significantly improved the customer investigation process, resulting in considerable cost and time savings for Credit Suisse.
INTRODUCTION

Information systems (i.e., databases) are essential to support business operations, client relationship management processes (CRM) and management decisions. More and more companies are pursuing the trend of automating processes (Betts, 2001) and relying on complex and interrelated information systems. But poor data management can generate incomplete results, followed by wrong decisions that can have a negative impact for commercial organizations (e.g., wrong decisions lead to investment errors) and even for public institutions (e.g., terror attacks due to gaps in subject identification processes). It can also complicate and prolong workflows, leading to complex, time-consuming and costly work processes. According to Redman, poor quality data can generate costs of up to 20% of revenue for a typical organization (Redman, 2005), and poor data management is costing global businesses more than USD 1.4 billion per year (PriceWaterhouseCoopers, 2002). These facts reflect the importance of high data quality and the awareness of it as an increasingly business-critical issue. Furthermore, data quality can become a competitive advantage for businesses, for example, by improving marketing or customer satisfaction.

Spontaneously launched data quality management programs and other strategic corporate initiatives are usually not entirely successful, or fail because the data used to monitor and support organizational processes are incorrect or incomplete or otherwise faulty for a given application. As a result, “dirty data” can cause delays or even erase the potential of new systems and theoretically efficient workflows (Betts, 2001).

The term “data quality” (see also the chapter titled “Information Quality Framework”) describes the quality with respect to the relevance, the accuracy, consistency and reliability of the existent information. It defines how adequate our sense of reality is relative to a model. Knowledge about the quality criteria is the basis of working with data sets. As shown above, it is not always necessary to fulfill all the quality criteria. It may be sufficient to know only on which quality level the criteria have to be set. Usually, the criteria are already defined within a work process. In natural and social science, data quality is especially important, as the precision of the measuring and the amount of the data source are relevant for the acceptability of the final results. In contrast, business science calls for high data quality because the results lead to future statements and management decisions. In the past few years, several incorrect financial statements have resulted in economic scandals, caused not only by criminal backgrounds but also by poor data quality (e.g., Barings Bank). On the other hand, intelligence services collect a large volume of various pieces of information of different quality levels. The amount of similar information can be relevant for matches when exact data are unavailable. In other words, the more personal information a secret service collects about a relatively unknown searched person, the closer inaccurate data sets get to the reality of the subject in question. At any rate, awareness of the environment in which the data are processed (such as
Related Content

Information Evaluation: A Scientific and Comprehensive Approach
Armando Malheiro da Silva and Fernanda Ribeiro (2014). Rethinking the Conceptual Base for New Practical Applications in Information Value and Quality (pp. 19-41).
www.igi-global.com/chapter/information-evaluation/84210?camid=4v1a

Management of Data Streams for Large-Scale Data Mining
www.igi-global.com/chapter/management-data-streams-large-scale/6546?camid=4v1a

Developer-Driven Quality: Guidelines for Implementing Software Process Improvements
www.igi-global.com/chapter/developer-driven-quality/26165?camid=4v1a
Actor Network Theory Applied to Organizational Change: A Case Study
Carlos Pascoa and José Tribolet (2014). *Rethinking the Conceptual Base for New Practical Applications in Information Value and Quality* (pp. 233-248).
[www.igi-global.com/chapter/actor-network-theory-applied-to-organizational-change/84219?camid=4v1a](www.igi-global.com/chapter/actor-network-theory-applied-to-organizational-change/84219?camid=4v1a)