Telehomecare in The Netherlands: Barriers to Implementation

H.S.M. Kort, HU University of Applied Sciences Utrecht and Eindhoven University of Technology, The Netherlands

J. van Hoof, HU University of Applied Sciences Utrecht and ISSO, The Netherlands

ABSTRACT

Telehomecare is one of the technological solutions used by older persons to remain living at home in their own community. A selection of 85 Dutch telehomecare projects was examined in terms of the barriers to their implementation. Three categories of telehomecare technologies were distinguished: (i) remote telecare, (ii) activity monitoring, and (iii) a category comprising telemedicine and e-health solutions and services. There are numerous barriers to the implementation of telehomecare technologies. In the majority of the Dutch telehomecare projects, the needs of both care recipients and family carers are addressed. The integration of needs derived from one’s health condition and the requirements set to technology are not always a match. Some projects give consideration to how to get commitment of the care professionals and their managers. Only a few projects consider economic aspects, for instance by the development of a social business case. To lift the barriers to the implementation of telehomecare, a better exchange of knowledge and experiences related to functionalities and user needs, the use of home modifications and assistive technologies, as well as the available care support should be considered.

Keywords: Ageing-in-Place, E-Health, Older Adults, Professional Care, Telecare

INTRODUCTION

In The Netherlands, with a population of 16.7 million (Statistics Netherlands, 2012), the majority of older adults live independently in the community. Telehomecare, in addition to a healthy environment which support daily living, offers older adults the solutions, to age in place. The rationale behind the use of telehomecare has various backgrounds. Firstly, the number of persons aged 65 and over increases by 400,000 between the years 2008 and 2013. At the same time, the potential workforce will decrease from 4.2 persons at present to 3.6 persons in the year 2013. There is also an increase in the number of single older adults, i.e., older persons living alone without a partner. Their number will increase from 750,000 in 2005 to 1.2 million in 2025 (RVZ, 2011), or 7.5% of the total Dutch population. Single older adults do not have sufficient access to social resources in order for someone else to take care of them. They are
insufficiently able to stand up for themselves and they often have no-one to manage their affairs. Particularly this group is expected to experience the negative effects of a shrinking working force. These effects are more outspoken in case of frail older adults.

Secondly, there is a shift from institutional care to care provided at home. The government promotes healthy behaviour and emphasises the importance of the prevention of diseases (RVZ, 2010). People prefer to remain living in the community, even when one’s health status is declining. Ageing-in-place (AiP) can be defined as the ability to live in one’s own home for as long as confidently and comfortably possible. Older adults are able to age-in-place when signals reflecting their condition are recognised and sufficiently dealt with in an early stage. Older adults, who live in an accessible dwelling, experience better well-being than those living in less accessible dwellings. Older adults tend to move to assisted living facilities when they do no longer feel safe and secure in their own home, or when their health declines to such an extent that professional care is required (SCP, 2011).

Finally, Dutch policies stimulate the use of telehomecare in order to (i) support AiP, (ii) to enhance the quality of life of older adults, and (iii) to decrease the work load of professional carers. In order to enable older adults to age-in-place, (i) persons receive support for (instrumental) activities of daily living ((I)ADL) and physical activity. In addition, homes can be modified in terms of (ii) architectural, and (iii) technological solutions (Stefanov et al., 2004). These interventions may, to a certain extent, facilitate AiP, depending on the health status of the occupants and the social and economic context (van Hoof, Kort, Rutten, & Duijnste, 2011).

Telehomecare applications are used by older adults and their use is recommended by professional carers in case of major health problems. Older adults are, however, usually not sufficiently familiar with these technological applications. The applications are based on technologies that older adults did not use during their own childhood or adolescence. It is not just the older adults, who are not familiar with the technology used for telehomecare applications. Most of the care professionals and their managers are not well-informed about the possibilities of telehomecare, too. In addition, telehomecare still is not a part of the day-to-day care infrastructure or care processes. Care professionals, who are familiar with telehomecare, do, however, recognise the necessity to use telehomecare in their daily practice (de Jong & Kruiswijk Jansen, 2010).

In The Netherlands, the use of telehomecare is currently stimulated through government subsidies, which are mainly granted for various pilot studies. In The Netherlands, 64% of older adults aged 65 plus and over have access to the Internet, whereas in the United States this is a mere 13% (Jones & Fox, 2009; van Deursen & van Dijk, 2010). In 2009 The Netherlands and Iceland were among the top ranking countries in Europe in terms of Internet access; with 90% of households having access to the web (Jones & Fox, 2009).

Furthermore, care professionals are not getting the same kind of training for the use of telehomecare as they are getting for face-to-face care.

In the field of health care we see an increasing number of services that use information and communication technologies (ICT) in order to provide care or support at a distance. This is often referred to as ‘telemedicine,’ ‘tele(home) care,’ or ‘telehealth.’ A broad range of terms and definitions is used. According to the European Health Telematics Association (EHTEL), the overarching theme of telemedicine can best be described as being ‘care at a distance’: “Telemedicine is an umbrella term that encompasses any medical activity involving an element of distance” (Wootton, 2001). The World Health Organization defines telemedicine as: “the delivery of healthcare services, where distance is a critical factor, by all healthcare professionals using information and communications technologies for the exchange of valid information for diagnosis, treatment and prevention of disease and injuries, research and evaluation, and for the continuing education of healthcare providers,
Related Content

A Cognitive Information Retrieval Using POP Inference Engine Approaches
www.igi-global.com/chapter/a-cognitive-information-retrieval-using-pop-inference-engine-approaches/218994?camid=4v1a

Evaluation of Software Quality using Choquet Integral Approach
www.igi-global.com/article/evaluation-software-quality-using-choquet/76299?camid=4v1a
Hybrid System with Artificial Neural Networks and Evolutionary Computation in Civil Engineering
www.igi-global.com/chapter/hybrid-system-artificial-neural-networks/24332?camid=4v1a

VAQoS: Architecture for End-to-End QoS Management of Value Added Web Services
www.igi-global.com/article/vaqos-architecture-end-end-qos/2409?camid=4v1a