Player Types, Play Styles, and Play Complexity: Updating the Entertainment Grid

Ricardo Javier Rademacher Mena, Futur-E-Scape, USA

ABSTRACT

In a previous work the author created the Education and Entertainment Grid by combining various taxonomies from the fields of play and learning. In this paper, a section of this grid known as the Entertainment Grid will be extended by including previously unused elements of Richard Bartle’s online player types and Robert Caillois’ play complexity. This Extended Entertainment Grid is then analyzed, revealing an interesting synergy between both men’s ideas. The main work of this paper, the Updated Entertainment Grid, is then created as a result of this analysis. This grid can be used by teachers as an interesting introduction and application of these taxonomies, by researchers interested in better understanding digital games and their players, and by designers interested in using the grid as part of their game design process.

Keywords: Education and Entertainment Grid, Entertainment Grid, Massively Multiplayer Online Games (MMOG), Play Complexity, Play Styles, Player Types, Virtual World

INTRODUCTION

Several frameworks have been developed to study play, player motivation, and other aspects of digital games. Among these are Yee’s (2002) motivational factors, Bjork and Holopainen’s (2005) game design patterns, Radoff’s (2011) quadrant model, and Stewarts (2011) unified model. All these recognize the importance of one of the more popular theories to emerge in recent years regarding digital games and that is the theory of online player types by Dr. Richard Bartle (1996). Bartle used his many years of experience in online virtual worlds to create a classification of player types based on the players’ motivations for immersing themselves in these worlds. Another theory of much earlier origin but gaining recognition today is Roger Caillois’ (1958) theory of play which classifies play styles and play complexity based on his personal observations. Both of these are popularly referred to as theories but it is more accurate to refer to them as taxonomies as the core of their content consists of a listing of elements and not a set of predictive concepts.

The main purpose of this paper is to present both of these taxonomies in their entirety and showcase their use by updating the previously presented Entertainment and Education Grid (Rademacher, 2010a, 2011) with concepts from these taxonomies that were previously left out. The paper begins with an in-depth explanation of both taxonomies so as to establish their con-
text within digital games and game design. In order to make this a self-contained work, the original **Entertainment Grid** (ENT) is built and an example of its use is presented. The focus will then shift to exploring and incorporating Bartle’s Implicit/Explicit axis and Caillois’ Freeform /Structured axis into the grid. As a result of these additions and subsequent analysis, the first new product of this paper, the **Extended Entertainment Grid** (X-ENT), is constructed. Then, from an analysis of the X-ENT, the main outcome of this paper, the **Updated Entertainment Grid** (U-ENT), is created. This will be done by exploiting proposed similarities in the content of both taxonomies as embodied by their axes, by further clarifying a player type in Bartle’s taxonomy, and by adding a new play style to Caillois’ taxonomy. In the conclusion, the creation of the U-ENT will be briefly summarized; how it can be used in the areas of game design, research, and education presented; and future investigations based on these grids discussed.

RICHARD BARTLE’S ONLINE PLAYER TYPE TAXONOMY

As a result of being co-creator of the world first Multi User Dungeon (MUD) as well as years of research on the subject of virtual worlds, Bartle (1996) created a set of two axes which he maintains reflect a wide spectrum of player motivations. In crossing these axes, four quadrants are created and a unique player type is associated with each quadrant. These crossed axes would provide what Bartle referred to as an interest graph whereupon a player would chart their preference on each axes independently and this would tell them with what type of player type they are most closely aligned. These player types have been the inspiration for many modern Massively Multiplayer Online Games (MMOGs) as well as a questionnaire known as **The Bartle Test** (Andreasen, 1996). This test assesses an individual’s predilection towards any one or many of the player type and, to date, has over 700,000 responses in its database.

The Interact/Act Axis

This axis represents the degree of interactivity that a player wishes to engage upon. On one side of the spectrum, there is the type of player who would rather **Interact** with other players or the world. On the other side of the spectrum, there are players who would rather just **Act** upon other players or the world. The basic motivation that this axis exposes is the difference between a player who wants to receive equal measures of action and reaction, cause and effect; and that of a player who is content with mere action and no reaction, cause without effect.

The World/Player Axis

This axis represents the target of the player interaction or action. On one side of the spectrum there are the types of players who would rather interact or act upon the **World**. On the other side of the spectrum there are the players who would rather interact or act upon another **Player**. This axis thus exposes the difference between players that like a solo game experience in an MMOG (and thus primarily like to play with the environment) and players that like the group play experience (and thus primarily like to play with other players).

The Four Player Types as a Result of the Two Bartle Axes

There are a total of four possible permutations from the extremes of the axis described in the previous sections. Each permutation is represented by a quadrant on this interest graph and reflects a combination of the degree and the target of a player’s interaction. Each permutation thus corresponds to a unique player type.

The intersection of the Interact and Player axis leads rise to the **Socializer** player type. This player type is recognized by being more interested in chatting or participating in social events than the actual gameplay itself, i.e., interacting with other players. The intersection of the Interact and World axis leads to the **Explorer** player type. This player type is recognized by constantly wanting to tinker with the world and
Related Content

Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences
Fabio Chiarello and Maria Gabriella Castellano (2016). International Journal of Game-Based Learning (pp. 1-14).
www.igi-global.com/article/board-games-and-board-game-design-as-learning-tools-for-complex-scientific-concepts/151550?camid=4v1a

Integrating Culture with E-Learning Management System Design
Ray Archee and Myra Gurney (2011). Teaching Cases Collection (pp. 27-43).
www.igi-global.com/chapter/integrating-culture-learning-management-system/52459?camid=4v1a
The Use of Motion Tracking Technologies in Serious Games to Enhance Rehabilitation in Stroke Patients
www.igi-global.com/article/use-motion-tracking-technologies-serious/60135?camid=4v1a

Designing Tutorial Modalities and Strategies for Digital Games: Lessons from Education
www.igi-global.com/article/designing-tutorial-modalities-strategies-digital/66879?camid=4v1a