Chapter XII

Internet-Based Neighborhood Information Systems: A Comparative Analysis

Danny Krouk, Bill Pitkin and Neal Richman
University of California, Los Angeles, USA

Introduction

Networks, networks everywhere
No place is undisturbed.
The revolution’s underway.
Its pace cannot be curbed.
-Vinton G. Cerf, September 2, 1999

This verse comes from a poem read by one of the key figures in the development of the Internet at a recent symposium held to celebrate the 30th anniversary of the first successful transmission of digital bits from one computer to another, which ushered in the era of computer networks (Kaplan, September 6, 1999). Perhaps not unexpectedly, participants in this commemorative event reflected on the rapid development of networking and what we today call the Internet and predicted its ubiquity in everyday life, likening it to electricity. Obviously, however, we are not quite there yet. Recent data from the U.S. Department of Commerce suggest that, despite rapidly increasing rates of computer ownership and Internet access in the United States, there are still many people who have been left out of the information revolution. Researchers found that Internet access is highly correlated with income, education level and race, leading them to conclude:

The information ‘haves’ have dramatically outpaced the information ‘have nots’ in their access to electronic services. As a result, the gap between these groups — the digital divide — has grown over time. (McConnaughey et al., 1999, p. 88)
In the context of globalization, this so-called “digital divide” exists between developed and developing countries, between rural and urban areas, and even within urban areas. According to two leading thinkers on the impact of the information age on urban areas, the digital divide has exacerbated existing socioeconomic disparities, creating “opposite and equally dynamic poles of the information economy” and leading to a socially-polarized “dual city” (Borja and Castells, 1997, p. 42).

If there exist such disparities in access to this new information media, what is being done to ensure that this gap does not increase even more, especially as the Net becomes more commercialized and subject to the needs and interests of business? As evidenced in the compilation of chapters in this book, there are numerous examples from around the world of people working to address this “digital divide” by promoting alternative, community-based Information and Communications Technology (ICT) projects. This “Community Informatics” approach seeks to “design electronically-enabled ‘services’ or applications so that they are as widely available and usable as possible” (Gurstein, 2000).

A natural venue for the development of such applications is the field of urban planning and community development, especially in light of recent changes in planning theory. The traditional “expert analyst” model of policy development, in which planners (i.e., the “experts”) serve as interpreters of data for policymakers, has increasingly been challenged by both practitioners and theorists who have long sought to reduce social and economic disparities as a part of “community building” in urban areas. According to John Friedmann (1987), this is accomplished when planners successfully link technical knowledge with action, thus leading to processes of social transformation. Reflecting on how Habermas’s theory of communicative action informs the experience of planning practice, several theorists contend that planning is a complex, dialogic process in which community residents must play a role (Forester, 1989; Innes, 1998). Therefore, planners serve as a link between the local government and residents, analyzing data and information in order to understand community dynamics and develop neighborhood plans in a collective process. Would this, then, not be an ideal place to explore the intersection between ICT and community planning and development?

One of the first inquiries into this issue took place in the spring of 1996, during a colloquium at the Massachusetts Institute of Technology’s Department of Urban Studies and Planning. The impetus for the colloquium came from faculty members in both the computer technology and community development concentrations of the department, and the presentations from the series were published in an edited volume (Schön et al., 1999). The academics who participated in the colloquium painted a rather grim picture of the impact of ICT on cities, outlining how it is—and likely will even more—increase social and economic disparities between the information “haves” and “have-nots” and debunking hype of “digital utopia.” Community activists, who had traditionally been skeptical of technology’s role in community planning and development, also participated in the colloquium and were surprisingly optimistic about the potential role of ICT in community building. The editors of the volume attribute this optimism to the activists’ realization that “at a time of declining government funding for inner cities, communities lacking electronic access to resource announcements will be disadvantaged in competing for scarce resources” (Schön et al., 1999, p. 374). Moreover, the colloquium gave the activists an
Primary Generators: The Influence of Digital Modeling Environments in the Creative Design Process
www.igi-global.com/article/primary-generators/239895?camid=4v1a

Environmental Sciences and Distance Education
www.igi-global.com/chapter/environmental-sciences-distance-education/17651?camid=4v1a