Chapter 17
An Efficient Algorithm for Data Cleaning

Payal Pahwa
Guru Gobind Singh IndraPrastha University, India

Rajiv Arora
Guru Gobind Singh IndraPrastha University, India

Garima Thakur
Guru Gobind Singh IndraPrastha University, India

ABSTRACT
The quality of real world data that is being fed into a data warehouse is a major concern of today. As the data comes from a variety of sources before loading the data in the data warehouse, it must be checked for errors and anomalies. There may be exact duplicate records or approximate duplicate records in the source data. The presence of incorrect or inconsistent data can significantly distort the results of analyses, often negating the potential benefits of information-driven approaches. This paper addresses issues related to detection and correction of such duplicate records. Also, it analyses data quality and various factors that degrade it. A brief analysis of existing work is discussed, pointing out its major limitations. Thus, a new framework is proposed that is an improvement over the existing technique.

INTRODUCTION
A process of transforming data into information and making it available to users in a timely manner is called Data warehousing.

A data warehouse is a central repository of an organization’s electronically stored data (http://searchsqlserver.techtarget.com).

DOI: 10.4018/978-1-4666-1873-2.ch017
ary are also considered integral components of a data warehousing system (Jarke, Lenzerini, Vassiliou, & Vassiliadis, 2000). The prime aim of data warehouses is to maintain data in a manner that enables its usage for other tasks such as Data mining (Elmasri & Navathe, 2000).

Data mining (often termed as knowledge discovery) is the efficient discovery of valuable, non-obvious information from a large collection of data. Data mining centers around the automated discovery of new facts and relationships in data (Lee, Lu, Ling, & Ko, 1999). With traditional query tools, you search for known information. Data mining tools enable you to uncover hidden information. The assumption is that more useful knowledge lies hidden beneath the surface (Ponniah, 2001). The process of knowledge discovery is meaningful only when it presents data in a useful form i.e. without any errors.

Data cleaning or scrubbing is the process of removing the errors from the data. It is an inherent activity related to database processing, updating and maintenance. Data fed from various operational systems prevailing in the different departments/sub-departments of the organization, has discrepancies in schemas, formats, semantics etc. due to numerous factors (Hang-Hai & Erhard, 2000; Marcus & Maletic, 2000). While integrating data from these heterogeneous sources multiple instances referring to the same real-world entity are generated which need to be pre-processed before loading in the data warehouse (Tamilselvi & Saravanan, 2008; 2009). One of the most difficult tasks is to distinguish between multiple occurrences of the same real-world data sets scattered over different sources (Shahri, Shahri, Hellerstein, & Raman, 2001). In addition, conflict arises when these heterogeneous sources have to be accumulated into a large data warehouse. By this we mean that these representations may contain unnecessary attributes that do not match the target warehouse. They may introduce redundancy leading to exact duplicates of records, interdependence where two or more records contain attributes correlated to each other such that presence of one demands the presence of the other as well, inconsistency where records differ in schemas, formats, abbreviations, etc. and lastly approximate duplicate those records which are replica of each other such that neither they are textually identical nor they point to the same real-world entity (Orr, 1998; Tamilselvi & Saravanan, 2008, 2009). All such unwanted data records are referred to as ‘dirty data’ (http://en.wikipedia.org). Our approach focuses on the identification of approximate duplicate records before loading them in the data warehouse. Hence, we present a brief overview of various sources of errors that arise due to machine or human intervention (Hernandez & Stolfo, 1995, 1998).

Sources of Erroneous Data

1. **Lexical errors** name discrepancies between the structure of the data items and the specified format.
2. **Syntactical errors** represent violations of the overall format.
3. **Irregularities** are concerned with the non-uniform use of values and abbreviations.
4. **Integrity constraint violations** Integrity constraints are used to describe our understanding of the mini-world by restricting the set of valid instances (Redman, 1996, 1998). Each constraint is a rule representing knowledge about the domain and the values
5. **Duplicates** are two or more tuples representing the same entity from the real world. The values of these tuples need not be entirely identical. Inexact duplicates represent the same entity but with different values for all or some of its attributes.
6. **Missing values** are the result of omissions while collecting the data. This is to some degree a constraint violation if we have null values for attributes where there exists a NOT NULL constraint for them (Winkler, 1999).
Related Content

Knowledge Management and Semantic Web Services
Izzat Alsmadi and Sascha Alda (2013). Knowledge-Based Processes in Software Development (pp. 35-48). www.igi-global.com/chapter/knowledge-management-and-semantic-web-services/84376?camid=4v1a

Impact of Knowledge Management Practices on Task Knowledge: An Individual Level Study

Sharing Knowledge When it Cannot be Made Explicit: The Case of Product Lifecycle Management Systems

Operational Knowledge Management
Fons Wijnhoven (2008). Knowledge Management: Concepts, Methodologies, Tools, and Applications (pp. 2829-2842). www.igi-global.com/chapter/operational-knowledge-management/25301?camid=4v1a