Chapter IV

Computational Intelligence Techniques

Bharat Sundaram, The University of Melbourne, Australia
Marimuthu Palaniswami, The University of Melbourne, Australia
Alistair Shilton, The University of Melbourne, Australia
Rezaul Begg, Victoria University, Australia

ABSTRACT

Computational intelligence (CI) encompasses approaches primarily based on artificial neural networks, fuzzy logic rules, evolutionary algorithms, support vector machines and also approaches that combine two or more techniques (hybrid). These methods have been applied to solve many complex and diverse problems. Recent years have seen many new developments in CI techniques and, consequently, this has led to many applications in a variety of areas including engineering, finance, social and biomedical. In particular, CI techniques are increasingly being used in biomedical and human movement areas because of the complexity of the biological systems. The main objective of this chapter is to provide a brief description of the major computational intelligence techniques for pattern recognition and modelling tasks that often appear in biomedical, health and human movement research.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
Computational intelligence is a branch of the study of artificial intelligence. Computational intelligence research aims to use learning, adaptive, or evolutionary algorithms to create programs that are, in some sense, intelligent. Computational intelligence research either explicitly rejects statistical methods, or tacitly ignores statistics.

Computational intelligence, as the name suggests, relies on number crunching. The field has developed enormously due to quantum jumps in computational power over the last two decades. The problems however, solved by computational intelligence techniques viz. search, optimization, adaptation and learning are age old. So, to understand computational intelligence, we must have a perspective of the other techniques that researchers have used to solve the same problems. These include statistical and syntactic approaches to solve the same problems.

The fundamental research question is: How to create a machine that can store information (not mere data) and interpret the learnt information in a useful manner? Add to this, the further requirement that the machine needs to be able to update its information database based on novel data and do this optimally. This objective takes different forms in different problems. For instance, in pattern recognition, the machine needs to be able to represent particular patterns, classify them, retrieve particular patterns if required, mark a novel pattern as previously unknown and generate a representation for it and so on.

Figure 1. Overview of problems in computational intelligence and machine learning

<table>
<thead>
<tr>
<th>Problems</th>
<th>Classification</th>
<th>Clustering</th>
<th>Search</th>
<th>Learning</th>
<th>Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Areas</td>
<td>Database management, all AI systems dealing with patterns, e.g. fingerprint or medical image recognition, robot navigation, weather forecasting, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approaches</td>
<td>Statistical methods</td>
<td>Computational Intelligence</td>
<td>Syntactic approaches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical methods</td>
<td>o Bayesian classification learning</td>
<td>o Artificial neural networks</td>
<td>o Context free grammars</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Maximum likelihood learning</td>
<td>o Genetic algorithms</td>
<td>o Inferential learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Hidden Markov models</td>
<td>o Fuzzy logic methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Time series analysis</td>
<td>o Support vector machines</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
Related Content

Vehicle Engine Classification Using Spectral Tone-Pitch Vibration Indexing and Neural Network

Two Novel Facial Feature Extraction Methods
David Zhang, Fengxi Song, Yong Xu and Zhizhen Liang (2009). *Advanced Pattern Recognition Technologies with Applications to Biometrics* (pp. 106-133).
[www.igi-global.com/chapter/two-novel-facial-feature-extraction/4278?camid=4v1a](www.igi-global.com/chapter/two-novel-facial-feature-extraction/4278?camid=4v1a)

Inertial Sensing in Biomechanics: A Survey of Computational Techniques Bridging Motion Analysis and Personal Navigation
Angelo M. Sabatini (2006). *Computational Intelligence for Movement Sciences: Neural Networks and Other Emerging Techniques* (pp. 70-100).
[www.igi-global.com/chapter/inertial-sensing-biomechanics/6807?camid=4v1a](www.igi-global.com/chapter/inertial-sensing-biomechanics/6807?camid=4v1a)

Modular Technical Concepts for Ambulatory Monitoring of Risk Patients Based on Multiple Parameters and an Automatic Alarm Function