Chapter 19
Application of Meta-Heuristic Optimization Algorithms in Electric Power Systems

N.I. Voropai
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

A. Z. Gamm
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

A. M. Glazunova
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

P. V. Etingov
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

I. N. Kolosok
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

E. S. Korkina
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

V. G. Kurbatsky
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

D. N. Sidorov
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

V. A. Spiryaev
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

N. V. Tomin
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

R. A. Zaika
Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences, Russia

B. Bat-Undraal
Mongolian University of Science and Technology, Mongolia

ABSTRACT

Optimization of solutions on expansion of electric power systems (EPS) and their control plays a crucial part in ensuring efficiency of the power industry, reliability of electric power supply to consumers and power quality. Until recently, this goal was accomplished by applying classical and modern methods of linear and nonlinear programming. In some complicated cases, however, these methods turn out to be rather inefficient. Meta-heuristic optimization algorithms often make it possible to successfully cope
Application of Meta-Heuristic Optimization Algorithms in Electric Power Systems

INTRODUCTION

Phasor measurement units (PMUs) are employed in EPS both to solve the local problems and to obtain a general picture of EPS state which is further used for solution of control problems. Placement of PMU for solution of the problems of the first group is very specific and is determined by individual features of the problems to be solved. To solve the problems of the second group, including SE problems, the universal methods are necessary to place PMUs and SCADA to provide the best properties of the SE problem, such as observability of the studied network, identifiability of bad data and accuracy of obtained estimates.

As criteria for PMU placement several criteria are used: absence of critical measurements and critical sets in the system, maximum quantity of measurements received as compared to the initial one, maximum accuracy of estimates, minimum cost of PMU placement, transformation of the network graph into tree. GA allows different PMU placement criteria to be combined. The proposed algorithm is validated by simulation.

Also the problem of PMU placement is suggested in such a way that the volume of initial information based on the SCADA and PMU measurements is sufficient to determine all the state vector components for load flow calculations without iterations. The PMU number in this case should be minimal. The problem of PMU placement is solved by the simulated annealing (SA) method.

The problem of multi-criteria reconfiguration of distribution network with distributed generation according to the criterion of minimum power loss under normal conditions and the criterion of power supply reliability under post-emergency conditions is considered. Efficient heuristic Ant Colony algorithm is used to solve the problem. Demonstration studies have been carried out for the Central Power System of Mongolia.

To improve the accuracy of short-term forecasting two-stage intelligent approach is proposed. On the first stage the initial data is decomposed by Hilbert-Huang transform (HHT), and the second stage involves ANN model optimized with SA algorithm and Neuro-Genetic Input Selection (NGIS). To train and build the optimal structure of ANN the optimization block “NGIS-SA” is used. The results show a solid improvement in the accuracy of short-term forecast for different non-stationary processes.

To enhance transient stability in large EPSs an application of fuzzy logic power system stabilizers (FLPSS) is presented. A two-stage technology of FLPSS adaptation is considered taking into account the real conditions of a power system. Self-organizing ANN is used for clusterization of the test disturbances. GA is applied to tuning parameters of FLPSS. ANN is used on-line to adapt FLPSS to changes in operating conditions.
50 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: www.igi-global.com/chapter/application-meta-heuristic-optimization-algorithms/69898?camid=4v1


Related Content

Best Features Selection for Biomedical Data Classification Using Seven Spot Ladybird Optimization Algorithm
www.igi-global.com/article/best-features-selection-for-biomedical-data-classification-using-seven-spot-ladybird-optimization-algorithm/204494?camid=4v1a

Optimal Structural Elements Sizing Using Neural Network and Adaptive Differential Algorithm

A Metaheuristic Approach to the Graceful Labeling Problem
www.igi-global.com/article/metaheuristic-approach-graceful-labeling-problem/51677?camid=4v1a

An Improved RBFNN Controller for a Class of Nonlinear Discrete-Time Systems With Bounded Disturbance
www.igi-global.com/chapter/an-improved-rbfnn-controller-for-a-class-of-nonlinear-discrete-time-systems-with-bounded-disturbance/190180?camid=4v1a