Chapter 36
Brain–Machine Interface Using Brain Surface Electrodes: Real–Time Robotic Control and a Fully Implantable Wireless System

Masayuki Hirata
Osaka University Medical School, Japan

Takufumi Yanagisawa
Osaka University Medical School, Japan

Kojiro Matsushita
Osaka University Medical School, Japan

Hisato Sugata
Osaka University Medical School, Japan

Yukiyasu Kamitani
ATR Computational Neuroscience Laboratories, Japan

Takafumi Suzuki
National Institute of Information and Communications Technology, Japan

Hiroshi Yokoi
The University of Tokyo, Japan

Tetsu Goto
Osaka University Medical School, Japan

Morris Shayne
Osaka University Medical School, Japan

Youichi Saitoh
Osaka University Medical School, Japan

Haruhiko Kishima
Osaka University Medical School, Japan

Mitsuo Kawato
ATR Computational Neuroscience Laboratories, Japan

Toshiki Yoshimine
Osaka University Medical School, Japan

ABSTRACT

The brain-machine interface (BMI) enables us to control machines and to communicate with others, not with the use of input devices, but through the direct use of brain signals. This chapter describes the integrative approach the authors used to develop a BMI system with brain surface electrodes for real-time robotic arm control in severely disabled people, such as amyotrophic lateral sclerosis patients. This integrative BMI approach includes effective brain signal recording, accurate neural decoding, robust robotic control, a wireless and fully implantable device, and a noninvasive evaluation of surgical indications.

DOI: 10.4018/978-1-4666-2196-1.ch036

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
INTRODUCTION

The brain-machine interface (BMI) is a man-machine interface that enables us to control machines and to communicate with others not with the use of input devices, but through the direct use of brain signals alone (Figure 1). Several diseases and conditions can lead to the loss of muscular control without a disruption in patients’ brain function, including amyotrophic lateral sclerosis (ALS), brainstem stroke, spinal cord injury, and muscular dystrophy, among others. BMI technology offers these patients greater independence and a higher quality of life by enabling the control of external devices to communicate with others and the ability to manipulate their environment at will (Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002).

There are two types of BMI: invasive BMI and noninvasive BMI. Invasive BMI requires surgical procedures and measures the brain signals from intracranial electrodes (needle electrodes or brain surface electrodes), whereas noninvasive BMI measures brain signals noninvasively from outside of the body using scalp electrodes, and so forth. To achieve a higher performance and a higher level of usefulness, we employed invasive BMI techniques, which involve the implantation of devices. For use in a practical situation, invasive BMI requires an organic integration of the following medical and engineering technologies:

1. Neural recording with high spatiotemporal resolution.
2. High-speed data transfer and processing.
3. Optimal extraction of appropriate neurophysiological features.
5. Robust control of external devices such as robotic arms and electric wheelchairs.
7. Noninvasive pre-surgical evaluations for appropriate surgical indications.
8. On-target survey and analysis of patient needs.

In this chapter, we describe the development of our invasive BMI system using brain surface electrodes.

NEURAL DECODING AND REAL-TIME ROBOTIC CONTROL USING ELECTROCORTICOGRAMS

Clinical Studies Using Electrocorticograms Recorded from Brain Surface Electrodes

In the process of providing neurosurgical treatments for specific groups of patients, we some-
Related Content

A Measure to Study Skin Reflectance using Non-Invasive Photosensor with Economic Design
[www.igi-global.com/article/a-measure-to-study-skin-reflectance-using-non-invasive-photosensor-with-economic-design/136236?camid=4v1a](www.igi-global.com/article/a-measure-to-study-skin-reflectance-using-non-invasive-photosensor-with-economic-design/136236?camid=4v1a)

Dynamic Business Processes and Virtual Communities in Wireless eHealth Environments
Dimosthenis Georgiadis, Panagiotis Germanakos, Constantinos Mourlas, George Samaras and Eleni Christodoulou (2010). *Ubiquitous Health and Medical Informatics: The Ubiquity 2.0 Trend and Beyond* (pp. 431-456).
[www.igi-global.com/chapter/dynamic-business-processes-virtual-communities/42945?camid=4v1a](www.igi-global.com/chapter/dynamic-business-processes-virtual-communities/42945?camid=4v1a)

Monitoring Brain Development in Preterm Infants: The Value of Automated Analysis of the Electroencephalogram (EEG)
[www.igi-global.com/chapter/monitoring-brain-development-preterm-infants/65273?camid=4v1a](www.igi-global.com/chapter/monitoring-brain-development-preterm-infants/65273?camid=4v1a)

A Study on Developing Cardiac Signals Recording Framework (CARDIF) Using a Reconfigurable Real-Time Embedded Processor
Uma Arun and Natarajan Sriraam (2019). *International Journal of Biomedical and Clinical Engineering* (pp. 31-44).
[www.igi-global.com/article/a-study-on-developing-cardiac-signals-recording-framework-cardif-using-a-reconfigurable-real-time-embedded-processor/233541?camid=4v1a](www.igi-global.com/article/a-study-on-developing-cardiac-signals-recording-framework-cardif-using-a-reconfigurable-real-time-embedded-processor/233541?camid=4v1a)