Chapter 5

E = Mportfolios²?
Challenges and Opportunities in Creating Mobile Electronic Portfolio Systems for Lifelong Learning

Ian Weber
World Wide Education, Wels, Austria

Peter Evans
University of Southern Queensland, Australia

ABSTRACT

This paper critically examines the developmental trends of mPortfolios and gauges their impact on newer forms of learning that utilise mobility, portability, and flexibility. Placing this study within the emerging paradigm of futures’ thinking, the paper focuses on the environmental factors that shape the direction of portfolio development from electronic to mobile systems using a series of global case studies to illustrate the challenges and opportunities that lay ahead for educators. While mobility and portability emerged as strong elements in design, flexibility remains a key challenge for educators. The analysis also revealed that sector based approaches to developing mPortfolios through research and Community of Practice structures are potentially more beneficial for mPortfolio developers. Yet within these approaches there are clear advantages to be accessed from the communal-dialogical approach found within the Community of Practice approach, which could potentially inform futures’ thinkers in relation to strategic planning and forecasting of new trajectories in mobile and lifelong learning.

INTRODUCTION

The future is a mix of the known, the unknown and the unknowable. It is for these reasons that people encounter the future with such anxiety and trepidation. However, others see futures’ thinking as an opportunity to understand and explain what lies ahead. For these researchers, knowing the future is much like “knowing the enemy” because the future is not the enemy unless provoked (Buchen, 2006). One of the key areas futures’ thinking focuses on in education...
is mobile learning. Kukulska-Hume (2005) suggests that the concept of mobile learning, at its most basic level, relates to the learner engaging in educational activities without the constraints of the physical environment. Mobile learning, therefore, can take place when the learner is not at a fixed, predetermined location, or when the learner takes advantage of learning opportunities offered by mobile technologies (O’Malley et al., 2003). These devices offer educators new ways to communicate and collaborate within an ever expanding array of teaching and learning activities. Accordingly, learning institutions are experiencing rapid adoption of these technologies, as well as within work and leisure, which links closely to the area of lifelong learning.

Kukulska-Hume (2005), however, warns that the task of providing such activities and appropriate learner support is complex and challenging. One of the emerging areas where educators are experiencing significant challenges is in the design and use of ePortfolio systems to facilitate assessment tasks. On a practical level these database systems provide ways to collect, store, organise, retrieve and publish information within the framework of an ePortfolio. In a sense, an ePortfolio system provides a framework in which the owner can store and structure small pieces of information into a meaningful, coherent narrative to achieve a particular goal and then published this to an audience (Young, 2002). Importantly, the user is able to structure the information fragments into multiple narratives and simultaneously publish these to multiple audiences. Given the breadth and potentiality of this technology, early assessment of the new database platform reflected the usually breathless enthusiasm found in hyperbolic marketing spiels that accompanies most new innovations. Comments such as “… a professional presentation and performance analysis tool unlike anything else you’ve ever seen before” and “if you can type into a word processor and click a computer mouse, you can develop an electronic portfolio … in 40 minutes or less” were commonplace (Kimball, 2005, p. 434). However, over time the marketing hyperbole has waned, replaced by more concerted efforts to describe and analyse the challenging aspects of this new generation of electronic portfolios within the mobile learning domain. Critical areas under discussion within ePortfolio literature relate to practical usage, pedagogy, informational learning, assessment, personal development, reflective learning, future employment, and so on (Young, 2002; Kimball, 2005; Jafari & Kaufman, 2006; Stefani et al., 2007).

This paper critically examines the developmental trends of ePortfolios and gauges their impact on newer forms of learning that utilise mobility, portability and flexibility within mPortfolio systems. It examines the processes involved in establishing these aspects of mobility, portability and flexibility within education, employment and social settings, thus offering mPortfolio users new ways to create and maintain information-sharing platforms over time and thus facilitate lifelong learning. In placing this study within the emerging paradigm of futures’ thinking, the paper focuses on the environmental factors that shape the direction of portfolios from electronic to mobile infrastructures using an array of global case studies to illustrate the challenges and opportunities that lay ahead for educators.

FUTURES’ THINKING, MOBILE AND LIFELONG LEARNING

Futures’ thinking is dominated by two agendas. On the one hand, the “science fiction” model suggests that the future is already here. At the core of this proposition is that the future is not only the key setting but also the main protagonist. From this perspective, the future is not just something that is “coyly” visited but intensely portrayed (Buchen, 2006). Accordingly, the role of imagination is critical to this position with writers, readers and cinematographers capturing multiple “realities”
Related Content

**Enhanced Utility in Search Log Publishing of Infrequent Items**
[www.igi-global.com/article/enhanced-utility-in-search-log-publishing-of-infrequent-items/115935?camid=4v1a](www.igi-global.com/article/enhanced-utility-in-search-log-publishing-of-infrequent-items/115935?camid=4v1a)

**Server-Side Technologies**
[www.igi-global.com/chapter/server-side-technologies/31193?camid=4v1a](www.igi-global.com/chapter/server-side-technologies/31193?camid=4v1a)

**Cloud State Surveillance: Dark Octopus Tentacle Clouds from the Atlantic**
[www.igi-global.com/chapter/cloud-state-surveillance/140887?camid=4v1a](www.igi-global.com/chapter/cloud-state-surveillance/140887?camid=4v1a)

**Indexing Techniques for Web Access Logs**
[www.igi-global.com/chapter/indexing-techniques-web-access-logs/31129?camid=4v1a](www.igi-global.com/chapter/indexing-techniques-web-access-logs/31129?camid=4v1a)