Chapter 12
Discrete Portable Measuring Device for Monitoring Noninvasive Intraocular Pressure with a Nano–Structured Sensing Contact Lens Prototype

Ana Moya
CIBER-BBN and IMB-CNM (CSIC), Spain

Anton Guimerà
CIBER-BBN and IMB-CNM (CSIC), Spain

Irene Sánchez
CIBER-BBN and IOBA, University of Valladolid, Spain

Vladimir Laukin
ICREA and ICMAB (CSIC), Spain

Raul Martín
CIBER-BBN, Department of Physics TAO and IOBA, University of Valladolid, Spain

Fernando Ussa
CIBER-BBN and IOBA, University of Valladolid, Spain

Elena Laukhina
CIBER-BBN and ICMAB (CSIC), Spain

Concepció Rovira
CIBER-BBN and ICMAB (CSIC), Spain

Jaume Veciana
CIBER-BBN and ICMAB (CSIC), Spain

José Carlos Pastor
CIBER-BBN, University Hospital and IOBA, University of Valladolid, Spain

Rosa Villa
CIBER-BBN and IMB-CNM (CSIC), Spain

Jordi Aguiló
CIBER-BBN and IMB-CNM (CSIC), Spain

ABSTRACT
A new portable measuring device for monitoring intraocular pressure with a non invasive system using a prototype of contact lens has been developed. The contact lens is based on a new organic flexible highly piezo-resistive film sensor that is glued to the central hole of a lens. The measuring system is wire connected to the contact lens and incorporates user interface methods and a Bluetooth link for bi-directional wireless data transfer.

DOI: 10.4018/978-1-4666-2794-9.ch012
INTRODUCTION

Glaucoma is the second cause of irreversible blindness worldwide (Resnikoff et al., 2004). Its prevalence varies between 1 and 3% depending on population studied and the diagnostic criteria (Raychaudhuri et al., 2005; Sung et al., 2006). Moreover, glaucomatous optic neuropathy leads to certain characteristic changes in the optic nerve head together with a visual field loss that is usually associated with an increase in the intraocular pressure (IOP) with values superior to basal ones, 21 mmHg (Sung et al., 2006). One of the most important parameters in glaucoma diagnosis is the IOP measurement and for the treatment of this disease the decrease of this IOP value is needed, to prevent the optic nerve damage (Asrani et al., 2000; Konstas, Mantziris, & Stewart, 1997; Rota-Bartelink, Pitt, & Story, 1996). Hughes et al. (2003) showed that punctual IOP measurements are not valid for glaucoma diagnosis demonstrating with a 24 h clinical monitoring that this value changes in an incident rate of 79.3% patients with glaucoma.

At the moment the only reliable method known to determine the IOP tensional curve is to perform continuous punctual measurements during 24 hours (Konstas, Mylopoulos, & Karabatsas, 2004). Due to the complexity of this method, the patient is forced to be admitted in a hospital during a day. Several attempts to enable a non-invasive IOP control with continuous monitoring have been done, however none of the developed devices have been integrated into clinical practice mainly due to technical problems and lack of long-term measurements stability (Flower, Maumenee, & Michelson, 1982; Greene & Gilman, 1974; Maurice, 1958; Svedbergh, Bäcklund, Hök, & Rosengren, 1992; Wolbarsht, Wortman, Schwartz, & Cook, 1980). Leonardi et al. has developed a marketable prototype based on a hydrophilic CLS, (Leonardi, Leuenberger, Bertrand, Bertsch, & Renaud, 2004; Leonardi, Pitchon, Bertsch, Renaud, & Mermoud, 2009) which measures deformations of the eyeball (changes in cornea curvature) due to IOP variations. This device is embedded in a soft contact lens with a platinum-titanium strain gauge. The IOP changes of this device are transmitted to a Pt-based sensor through the deformation of the soft contact lens.

The discovery of ultra high piezo-resistive properties in flexible conducting all-organic bi-layer (BL) films (Laukhina et al., 2010) has enabled the design and fabrication of novel pressure sensor devices (Laukhina, Mas-Torrent, Rovira, Veciana, & Laukhin, 2006). Such BL films consist of a polycarbonate film covered on one of its sides with a thin layer of nanostructured crystals of an organic molecular conductor; like the bis(ethylendithio)tetrathiafulvalene (ET) charge-transfer salt β-(ET)213. The ultra high piezo-resistivity of such BL films is originated by the softness of the nanocrystals of the conducting salt (Kondo et al., 2006), embedded on the top of the polymeric matrix, that are deformed under small strains changing their conducting properties. Other advantages of using BL films as piezoresistive materials is that they enable to develop strain sensitive active elements that are flexible and transparent and which can be easily glued over a hole of any configuration for fabricating...