Exploring the Design of Game Enjoyment Through the Perspectives of Novice Game Developers

Fengfeng Ke, Educational Psychology and Learning Systems, Florida State University, Tallahassee, FL, USA
Nilay Yildirim, Instructional Design, Development and Evaluation, Syracuse University, Syracuse, NY, USA
Jacob Enfield, Department of Cinema and Television Arts, California State University at Northridge, Northridge, CA, USA

ABSTRACT

In this collaborative research, the authors explored the ways in which novice game designers utilize strategies and methods to promote player enjoyment. Adopting the GameFlow model and an exploratory survey, this study examined the perceptions of the 2011 Global Game Jammers at three different sites in regards to designing games that result in player enjoyment. The results of the study were consistent with the findings of the current literature on game enjoyment, and insinuated the notion of interconnected relationships between each GameFlow element. The study also suggested the existence of five latent groups of novice game designers who differed in their preference or perceived importance of game enjoyment elements. Lastly, there appeared to be an association between individual characteristics and perceptions of game flow design elements among novice game designers.

Keywords: Flow Theory, Game Design Education, Game Enjoyment, GameFlow, Global Game Jam

INTRODUCTION

Although ensuring player enjoyment is one of the main concerns for game design and development, there is a lack of systematic discussion or empirical examination on what kind of strategies, frameworks, or models should be incorporated into the game design process to reinforce player enjoyment (Habgood, Ainsworth, & Benford 2005; Klopfer, Osterweil, & Salen, 2009). To empirically examine the potential strategies of designing for player enjoyment, we conducted an exploratory, descriptive research study on the game design and development processes that took place during the 2011 Global Game Jam (GGJ) at three different participating sites. Specifically, the study addresses the following questions: How did
GGJ game designers perceive the GameFlow model elements related to player enjoyment? What kind of design strategies did novice game designers report using? Are there any potential groupings amongst the novice game designers which may predict their perceptions of the design of player enjoyment in games?

The authors of this study adopted an enjoyment-driven, game design framework called GameFlow (Sweetser & Wyeth, 2005) to explore the ways in which novice game designers utilize strategies and methods to promote player enjoyment. GameFlow model, founded on Cziksentmihalyi’s (1990) Flow Model, is a heuristic evaluation framework that provides important guidelines for designing enjoyable games. The authors examined GGJ participants’ use of design strategies and methods within the lens of the seven fundamental design elements provided by the GameFlow model framework: concentration, challenge, skills, control, clear goals, feedback, and social interaction.

THEORETICAL FRAMEWORK

Providing an enjoyable experience for players is one of the utmost important goals of video games (Sweetser & Wyeth, 2005). Player or game enjoyment is a multidimensional construct, comprising not only the joy of playing but also the sense of satisfaction after tackling challenges and competitions in the game (Lazzaro, 2005). Klimmit (2003) has argued that player or game enjoyment can be determined by elements at three levels: (1) input and feedback loops between the player and the game as a result of the interactivity of digital games (Garris, Ahlers, & Driskell, 2002), (2) cyclic feelings of suspense-relief and increased self-esteem, and (3) the facilitation or experience of perceived alternative reality in the gaming world (e.g., immersion or presence). After reviewing the previous theoretical and empirical research on enjoyment of digital games based on Klimmit’s three-level conceptual model, Wang, Shen, & Ritterfeld (2009) argued that the flow theory by Cziksentmihalyi (1990) is the most credible framework to depict Klimmit’s third and highest level of game enjoyment – immersion or presence.

Flow state, a term created by Csikszentmihalyi (1990), indicates that an activity can generate an enjoyable, immersive experience in which people are in a state of flow. Flow can be characterized by “focused concentration, loss of self-consciousness, a sense that one is in control of the situation, distortion of temporal experience, and the experience of the activity as intrinsically rewarding” (Sherry, 2004, p. 336). Being in a flow-like state for gamers equates to being deeply engrossed and immersed in the gameplay. As a popular phenomenon, “immersive gameplay” has been at the center of all the conversations related to the concepts of fun, engagement, motivation, and entertainment (Becker, 2006).

Although the importance of player enjoyment through immersive gameplay is commonly mentioned and discussed (Garris, et al., 2002; Koster, 2005), there is a lack of well-structured design models that provide comprehensive directions on how to design for player enjoyment in games. Game researchers Sweetser and Wyeth (2005) take the flow theory as a foundation to develop a design model of player enjoyment in games - the GameFlow model. The GameFlow model comprises eight essential elements that can be used to design and evaluate the flow state afforded by games: concentration, challenge, skills, control, clear goals, feedback, immersion, and social interaction.

Concentration

Csikszentmihalyi (2000) described flow as a state of energetic focus and creative concentration. Focus and concentration hold the key to achieving flow. As such, Sweetser and Wyeth (2005) have listed concentration as a critical GameFlow element and described it as the affordance of a game to quickly grab players’ attention and maintain it on the gaming task throughout the game. A relative design principle, as Killi (2005) claimed, is to avoid distracting players with irrelevant information and hence avoid overloading players’ cognitive, affective, and memory system. Another design principle,
Related Content

Self-Regulated Learning in Video Game Environments
[www.igi-global.com/chapter/self-regulated-learning-video-game/20117?camid=4v1a](www.igi-global.com/chapter/self-regulated-learning-video-game/20117?camid=4v1a)

Stalin’s Dilemma: Design, Development, and Employment of a College Level Historical Computer Game
Edward Bever (2012). *Handbook of Research on Serious Games as Educational, Business and Research Tools* (pp. 965-990).
[www.igi-global.com/chapter/stalin-dilemma-design-development-employment/64295?camid=4v1a](www.igi-global.com/chapter/stalin-dilemma-design-development-employment/64295?camid=4v1a)
Examining Epistemic Practices of the Community of Players of Dwarf Fortress: “For !!SCIENCE!!”
www.igi-global.com/article/for-science/133619?camid=4v1a

Playful Learning Experiences: Meaningful Learning Patterns in Players’ Biographies
www.igi-global.com/article/playful-learning-experiences/56338?camid=4v1a