Chapter 3
Integrating Video Lecture Tools in Online and Hybrid Classrooms

Patricia Desrosiers
Western Kentucky University, USA

ABSTRACT

Use of technological resources can greatly enhance the effectiveness of online instruction. Developing familiarity with these new resources can be time consuming and difficult for professors already overburdened with high class sizes and course load assignments. This chapter introduces the basic components of three general types of video lecture tools: lecture capturing tools, web conferencing tools, and video hosting and streaming tools by providing details of three specific software platforms: Tegrity™, Adobe® Connect™, and YouTube. Suggestions for their effective use in both online and hybrid classrooms are given.

INTRODUCTION

There has been a definitive trend in many universities and colleges over the last decade embracing E-learning and moving towards more online based instruction (Kim & Bonk, 2006; Ko & Rossen, 2010). In an increasingly technologically dependent and proficient world, and given the rapid growth of distance education, the ability to effectively teach online is thus becoming more important for instructors to master. In response to this rapidly shifting education milieu, there have been a host of dynamic programs developed to assist instructors in effectively conveying material online. The purpose of this chapter will be to afford readers a beginning familiarity with three of the most cutting edge and promising modalities: lecture capturing tools, web conferencing tools and video hosting and streaming tools. By utilizing these tools (separately or in tandem), instructors

DOI: 10.4018/978-1-4666-3962-1.ch003
can stay ahead of the technology curve and enhance the overall quality of their online classes. A method for integration of these software tools into course design will be provided.

INTEGRATION OF VIDEO SOFTWARE INTO HYBRID AND ONLINE COURSES

Using synchronous and asynchronous software platforms in both hybrid and completely online courses can be challenging. It is advisable to avoid simply putting a face-to-face course online because the learning activities won’t be appropriate (Simonson, Smaldino, Albright, & Zvacek, 2009). By using Bloom’s Taxonomy (1956) and determining the content type required by the learning objectives (Clark, 1999), it is possible to determine which format would be better suited for the delivery of selected content. Consequently, components of course design related to choosing video technology formats will be discussed in this section, using case examples. By taking advantage of the strengths of both environments, students become more engaged in their learning, resulting in better learning outcomes.

Bloom’s Taxonomy

A revision to Bloom’s Taxonomy (Krathwohl, 2002) is used here to begin the discussion of a method of software tool selection. By adding a second dimension, the knowledge dimension, to Bloom’s six cognitive processes, Krathwohl (2002) designed a useful grid. The knowledge dimension includes factual, conceptual, procedural and metacognitive types of knowledge, and this dimension is on the vertical axis of the grid. The cognitive processes of remembering, understanding, applying, analyzing, evaluating and creating make up the horizontal axis.

By placing each of the learning activities for a course within the grid, it is easy to determine which dimensions are emphasized or underutilized. Depending upon the level of learner expertise and the learning objectives for the course, it may be appropriate to emphasize certain types of knowledge over others or to minimize certain types of knowledge.

For example, a course on professional ethics included the following learning objectives: (1) Students will analyze and evaluate current ethical practices in their workplace environment; (2) Students will successfully recall, interpret and apply a professional code of ethics to an ethical dilemma; (3) Students will identify personal biases and the influence of those biases upon their ethical decision making practices and (4) Students will produce a plan for the reduction of the influence of personal ethics upon their professional practice. Each of these learning objectives can be placed within the Taxonomy Table as described by Krathwohl (2002) as shown in Table 1.

This ethics course is a combined 4th year Bachelor’s/1st year Master’s level course, and as you can see the objectives lean toward the lower right quadrant of the grid which would be appropriate. If your course was a first year introductory course, your objectives would most likely cluster towards the upper left quadrant although there are frequently objectives that would be found appropriately out of that quadrant. It is not necessary to fill all of the quadrants to plan a successful course, and it is typical that some learning objectives would fit into multiple categories. It is most important to make sure the learning objectives lean towards the expected quadrant of the table. Use of Table 1 in the planning stage will ensure that your objectives are appropriate for your course.

Method of Tool Selection

After applying the course grid to your course’s particular learning objectives, you will need to choose appropriate learning activities to meet these objectives. It is important at this point to
Related Content

A Taxonomy of Database Operations on Mobile Devices
[www.igi-global.com/chapter/taxonomy-database-operations-mobile-devices/20957?camid=4v1a](www.igi-global.com/chapter/taxonomy-database-operations-mobile-devices/20957?camid=4v1a)

Critical Factors in Defining the Mobile Learning Model: An Innovative Process for Hybrid Learning at the Tecnologico de Monterrey, a Mexican University
[www.igi-global.com/chapter/critical-factors-defining-mobile-learning/50623?camid=4v1a](www.igi-global.com/chapter/critical-factors-defining-mobile-learning/50623?camid=4v1a)

Context-Based Interpretation and Indexing of Video Data
[www.igi-global.com/chapter/context-based-interpretation-indexing-video/27105?camid=4v1a](www.igi-global.com/chapter/context-based-interpretation-indexing-video/27105?camid=4v1a)

Towards Fusion of Textual and Visual Modalities for Describing Audiovisual Documents
[www.igi-global.com/article/towards-fusion-of-textual-and-visual-modalities-for-describing-audiovisual-documents/130339?camid=4v1a](www.igi-global.com/article/towards-fusion-of-textual-and-visual-modalities-for-describing-audiovisual-documents/130339?camid=4v1a)