Chapter 18

Making Learning Reel: Student–Made Videos on Mobile Devices

Rochelle Rodrigo
Old Dominion University, USA

Kristopher Purzycki
Old Dominion University, USA

ABSTRACT

As more students bring powerful pocket-sized computers to class in the form of their smartphones and tablets, faculty need to take advantage by devising curriculum that incorporates mobile video production as a means of contributing to the discourse of the university and the world at large. Projects where students use mobile devices to make videos create active learning environments where they are more likely to build and connect their classroom learning with what they already know. These types of projects also develop student digital composing skills while navigating several issues pertinent to a 21st century participatory culture. These assignments engage students with themes and issues that not only promote success in higher education but throughout their careers.

INTRODUCTION

While watching Father Guido Sarducci’s comedic skit “Five Minute University,” many college faculty laugh uneasily because we recognize the “truth” in the skit. Not only is it difficult to teach so that the material is retained beyond the final exam, instructors must also impart to students the confidence to apply their learning to situations outside of the classroom. Since Tagg and Barr’s 1995 article in Change, which flipped scholarly focus on pedagogy from faculty teaching to student learning, most “new” pedagogical strategies have focused on ways to better facilitate students learning and knowledge transfer; in short, student learning requires active engagement with both the content being taught as well as with other individuals.

No longer regarded as only a source for entertainment, communication, and engagement, the mobile phone and smartphone have also developed into tools that facilitate community involvement and social collaboration. No longer limited to only telephonic capabilities, these sophisticated...
Making Learning Reel

devices allow users to not only capture but also edit and then distribute images and video. Assignments designed to take advantage of all the capabilities many mobile devices offer provide instructors and students alike with the tools to immerse themselves within teaching and learning. Specifically, instructors can develop mobile video assignments that ask students to make connections between their learning and context by recognizing the meaning-making opportunities that exist within their community, recording a significant concept or event, and then sharing their interpretation with a wider audience.

In this chapter, we will outline strategies and assignments that prompt students to produce their own videos using mobile devices through a curriculum that aids learning and the transfer of knowledge. Furthermore, we will discern many of the considerations instructors must weigh before incorporating these lessons into their syllabi.

BACKGROUND

With increasing calls for accountability, many faculty in higher education are paying more attention to which teaching strategies better promote student learning – with most realizing that they are uninterested in students simply echoing facts as evidence of knowledge retention. Instead, instructors want their classes to demonstrate the complex levels of learning that usually rank higher on Bloom’s Taxonomy of the Cognitive Learning Domain (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956); faculty are explicitly interested in learning that demonstrates analysis, synthesis, and evaluation.

More recent scholarship about teaching and learning has expanded both concepts of knowing and learning. Kalantzis and Cope (2008) outline a shift in “ways of knowing” from confidence in concrete truths based upon a single way of creating knowledge to an epistemological relativism and a more skeptical approach to both the process and product of knowing, (p. 189). The authors then outline “knowledge repertoires,” a more contemporary and diverse understanding of knowledge that accounts for legitimated methods of knowing with respect for difference (p. 189). There has also been an explosion of scholarship that discusses the neurological aspects of knowing and learning. Zull (2002) reminds us that learning must occur within specific sections of the brain and knowing physically changes the brain.

The more contemporary neurological research on learning has reminded many faculty that Bloom’s Taxonomy did not only include the cognitive domain. The affective domain (Krathwohl, Bloom, & Masia, 1964) and the psychomotor domain (Simpson, 1972) greatly impact student learning. Since Sutton-Smith’s landmark articulation of the relationship between play and learning in The Ambiguity of Play (1997), many in higher education have sought a curriculum that unites these once conceptually polarized concepts. Lack of stress (Medina, 2008), coupled with positive, even fun (Zull, 2002), learning activities that engage all of the senses (Medina, 2008; & Zull, 2002) are more likely to facilitate learning.

Seeing this shift towards a more robust understanding of knowing and learning helps make sense of Fink’s (2003) Taxonomy of Significant Learning. The first three categories resemble Bloom’s Cognitive Taxonomy: Foundational Knowledge, Application, and Integration (Fink, 2003). The next two expand learning to include a “Human Dimension” that facilitates learning about oneself and others as well as a “Caring” which facilitates “developing new feelings, interests, and values” (p. 30). The final category is more metacognitive with a focus on “Learning How to Learn” (p. 30). Kalantzis and Cope (2008) also characterize students’ “new” learning as a process of “social cognition and collaborative learning” that is fueled by “distributed knowledge, with more people as active knowledge makers” (p. 189).

Once faculty acknowledge this expansive shift in how we understand knowing and learning, they also realize their teaching, their actual classroom practice, has to change accordingly. Weimer (2002)
Related Content

Efficient Imbalanced Multimedia Concept Retrieval by Deep Learning on Spark Clusters

[www.igi-global.com/article/efficient-imbalanced-multimedia-concept-retrieval-by-deep-learning-on-spark-clusters/176638?camid=4v1a](www.igi-global.com/article/efficient-imbalanced-multimedia-concept-retrieval-by-deep-learning-on-spark-clusters/176638?camid=4v1a)

Collaborative Work and Learning with Large Amount of Graphical Content in a 3D Virtual World Using Texture Generation Model Built on Stream Processors
Andrey Smorkalov, Mikhail Fominykh and Mikhail Morozov (2014). *International Journal of Multimedia Data Engineering and Management* (pp. 18-40).


Digital TV as a Tool to Create Multimedia Services Delivery Platform

[www.igi-global.com/chapter/digital-tool-create-multimedia-services/17426?camid=4v1a](www.igi-global.com/chapter/digital-tool-create-multimedia-services/17426?camid=4v1a)

IT Management Practices in Small Firms

[www.igi-global.com/chapter/management-practices-small-firms/17291?camid=4v1a](www.igi-global.com/chapter/management-practices-small-firms/17291?camid=4v1a)