Chapter 2

Does the Introduction of RFID Technology Improve Livestock Subsidy Management? A Success Story from an Arab Country

Kamel Rouibah
Kuwait University, Kuwait

Abdulaziz Al Ateeqi
Public Authority of Agriculture Affairs and Fish Resources, Kuwait

Samia Rouibah
Gulf University for Science & Technology, Kuwait

EXECUTIVE SUMMARY

While the expected benefits and challenges of RFID technology have been well studied in the manufacturing and service sectors at the private organization level, little understanding exists of these two issues when exploring RFID adoption in the agricultural field and at the public organizational level. Previous tracking programs in Kuwait have been unsuccessful in reducing illegal activities that lead to fraud and the wasting of public money in animal feed programs. To alleviate these problems, an RFID program, supported by information systems, was designed to help monitor and control feed distribution and animal tracking.

DOI: 10.4018/978-1-4666-3619-4.ch002
Does the Introduction of RFID Technology Improve Livestock Subsidy Management?

Unlike previous studies, this case describes the application of RFID for the tracking and monitoring of livestock by the Kuwait Public Authority of Agriculture Affairs and Fish Resources. It reviewed the subsidy process before and after RFID adoption and found a large reduction in the actual number of animals claimed after RFID adoption, which reduced fraud and increased animal accountability.

ORGANIZATION BACKGROUND

Even though RFID technology seems to have emerged quite recently, the concept is not new. It has its origins in military applications during World War II, when the British Air Force used RFID technology to distinguish allied aircraft from enemy aircraft with radar (Asif & Mandviwalla, 2005). RFID received great attention by academia and practitioners after the Society of Information Management (SIM) conducted its last survey of Information Technology executives, and RFID was rated among the top 20 developments in application and technology (Luftman et al., 2006).

Literature review papers on RFIDs (Roussos & Kostakos 2009) identified a variety of RFID applications including supply chain, ticketing, asset tracking, retail stores, personal identification, library books, hospitals, and animal tracking. Moreover, these studies have shown numerous potential advantages as listed in Table 1.

Firms are making huge investments in information technology to improve their efficiency. Available statistics, according to IDTechEx, a market research, specializing in RFID (www.idtechex.com), estimates that more than 3.7 billion RFID tags have been deployed in the field by 2007 (with more than 1.6 billion new tags introduced in 2006 alone) and this trend is accelerating. Another consulting firm, eMarketer, 2005, estimates that worldwide investments in RFID technology may rise from $363 million in 2004 to almost $3000 billion in 2010. However, the impacts from these investments remain a challenging and controversial task to assess. For example, Brynjolfsson and Hitt (1996) concluded that IT investments can lead to cost savings, improved quality in service and better customer service. However, Willcocks and Lester (1994) suggested that there is no clear link between IT spending and a firm’s gains in terms of market share or profitability, while others have concluded that the value of IT is high when the adoption is aligned with the organization’s strategic objectives (Chan & Reich, 2007). A recent study found the existence of a high correlation between perceived potentials of RFID and CIO’s intention to invest in RFID (Leimeister et al., 2009); however, the real challenge facing decision makers, as is the case of the PAAF, is how to systematically leverage the potential of RFID in other cultures and settings (Curtin et al., 2007; Leimeister et al., 2009) and how to align the application with the organizational objectives.

While there is a growing interest in the application of RFID and several conceptual and empirical studies do exist (Ngai et al., 2008; Roh et al., 2009; Leimeister
Related Content

IoT Setup for Co-measurement of Water Level and Temperature
www.igi-global.com/article/iot-setup-for-co-measurement-of-water-level-and-temperature/182290?camid=4v1a

A Fuzzy Knowledge Based Fault Tolerance Mechanism for Wireless Sensor Networks
www.igi-global.com/article/a-fuzzy-knowledge-based-fault-tolerance-mechanism-for-wireless-sensor-networks/190893?camid=4v1a

Reversible Data Hiding Scheme for ECG Signal
www.igi-global.com/article/reversible-data-hiding-scheme-for-ecg-signal/206876?camid=4v1a