ABSTRACT

Business-IT alignment has been on the top of the concerns of IT executives for many years and how to assess it has been under research. Among many proposals, one of the best known and cited in the literature, showing some relevant empirical work, is the Luftman’s Strategic Alignment Maturity (SAM) categories assessment. Taking it as a framework, seven other proposals are examined using SAM categories as dimensions of business-IT alignment: communications, competency/value measurements, governance, partnership, technology scope and skills. Except for one proposal revealing a tactical level approach, this review shows that business-IT alignment assessment has been studied essentially at the strategic level. Among the examined dimensions across the several proposals, governance is the best covered one while the human resource skills dimension is considerably neglected. Having still room for improvements, either in the governance or the technology scope dimensions, the SAM assessment seems a well balanced instrument. The empirical work already found on SAM provides a good starting point to get an acceptable validated instrument. However, if in terms of content validity, SAM is one of the most promising instruments, there is still much work to do on what concerns its operationalization. Future research should strive for a rigorous, strong instrument on every component of construct validity, namely, the convergent, discriminant and nomological components.

Keywords: Alignment Approaches, Alignment Dimensions, Business and IT Alignment (BIA), Instrument Validity, Literature Review, Strategic Alignment Maturity (SAM)

INTRODUCTION

Over the past years, IT managers, have been concerned with Business and IT alignment (BIA) under the expectation that achieving alignment could positively influence business performance (Bergeron, Raymond, & Rivard, 2004; Chan, Huff, Barclay, & Copeland, 1997; Chan, Sabherwal, & Thatcher, 2006; Cragg, King, & Hussin, 2002; Kearns & Lederer, 2003; Sabherwal & Chan, 2001). A regular annual survey of U.S.-based organizations has ranked
BIA in the top 10 concerns for many years in a row, moving it from the third place in 2010 to the first top concern in 2011 (Luftman & Ben-Zvi, 2011). Nevertheless, although this remains a frequent concern, it seems “we’re no closer to IT alignment today than we were 20 years ago” (DeLisi, 2007).

Terms such as “linkage” (Reich & Benbasat, 1996), “strategic alignment” (Chan et al., 2006; Henderson & Venkatraman, 1993), “strategic fit” or “functional integration” (Henderson & Venkatraman, 1999), “coalignment” (Bergeron et al., 2004; Venkatraman & Prescott, 1990), “information systems alignment” (Benbya & McKelvey, 2006), “IT alignment” (Chan & Reich, 2007; Henderson & Venkatraman, 1993) or “IT and business strategy coordination” (DeLisi, 2007) have been used regarding BIA. Reich and Benbasat (1996, p. 56) have seen it as “the degree to which the mission, objectives and plans of IT support and are supported by the business mission, objectives and plans”. However, some authors contend that rather than a bivariate conceptualization of alignment between business and IT, looking into just one alignment type, the complex and interrelated nature of the relationships between constructs requires a holistic approach (Bergeron et al., 2004; Chan et al., 1997).

Alignment is a multifaceted concept. Its complexity involves strategic and intellectual facets like the interrelation of business and IS plans or structural or social facets like the decision making rights. It can also comprise social aspects like the shared domain knowledge between business and IT executives or cultural facets like some pragmatic issues related with soft-tier alignment as the weakness of CEO–CIO relationships (Chan & Reich, 2007; Singh & Woo, 2009).

As other constructs, alignment shapes the foundation for higher levels of abstraction about hypothesized relationships among variables. The operationalization of a construct requires the definition of the underlying concept, distinguishing, understanding and measuring it with empirical observations. Since the alignment is definitively a very complex construct, the rational for its operationalization is expected to be difficult and not obvious. But the operationalization of the alignment is not only important as a way of understanding it but also vital to the rigor and accuracy of any study.

This work intends to do a review of relevant business and IT alignment instruments under SAM categories. It is divided into six more sections. Next session describes the relevance of Luftman’s instrument. It briefly presents this instrument and a short review and critique in what concerns the instrument validity by looking at studies that used Luftman’s instrument. The selection process of the alignment instruments is then introduced, followed by the presentation of various features of the selected and studied instruments. It is followed by the analysis of business-IT alignment instruments under each one of the dimensions of Luftman’s model. Finally, the paper ends with some conclusions and future research directions.

THE RELEVANCE OF LUFTMAN’S SAM INSTRUMENT

The Luftman’s (2003a) approach to measure alignment is one of the most well known instruments showing more than 400 citations in Google Scholar. Many studies used Luftman’s approach to measure business-IT alignment (Brodebeck, Rigoni, & Hoppen, 2008; Chen, 2010; Löbler, Bobsin, & Visentini, 2008; Nicklas & Janz, 2010; Rigoni, 2006; Sledgianowski, 2009; Sledgianowski, Luftman, & Reilly, 2006; Straub, Boudreau, & Gefen, 2004). Over 50 Global 2000 organizations and government agencies have successfully applied the instrument (Luftman, 2003b).

Luftman proposes a Strategic Alignment Maturity (SAM) model for measuring the alignment between the business strategy and the IT strategy based on the Capability Maturity Model (CMM) model. His instrument takes into account six specific maturity categories as alignment dimensions: communications, competency/value measurements, governance, partnership, technology scope and skills. Using
Human Factors Required for Building NLP Systems
[www.igi-global.com/chapter/human-factors-required-building-nlp/47352?camid=4v1a](www.igi-global.com/chapter/human-factors-required-building-nlp/47352?camid=4v1a)

A Comparative Case Study of Indonesian and UK Organisational Culture Differences in IS Project Management
[www.igi-global.com/article/comparative-case-study-indonesian-organisational/53201?camid=4v1a](www.igi-global.com/article/comparative-case-study-indonesian-organisational/53201?camid=4v1a)