Lost in Translation: Comparing the Impact of an Analog and Digital Version of a Public Health Game on Players’ Perceptions, Attitudes, and Cognitions

Geoff F. Kaufman, Tiltfactor Laboratory, Dartmouth College, Hanover, NH, USA
Mary Flanagan, Tiltfactor Laboratory, Dartmouth College, Hanover, NH, USA

ABSTRACT

In light of a growing body of work demonstrating the ability of games to transform cognitive skill sets and change attitudes toward social issues, including in public health, it is crucial to understand the potentially divergent experiences and outcomes afforded by analog and digital platforms. In a recent empirical study, the authors addressed the basic question of whether transferring a public health game from an analog to a digital format would impact players’ perceptions of the game and the efficacy of the game for stimulating changes to beliefs and cognitions. Results revealed that the digital version of the game, despite being a nearly identical translation, was perceived by players to be more complicated than the analog version and, consequently, was less effective at facilitating learning and attitude change. The authors propose several explanations for this finding, based on psychological theories, to help elucidate critical distinctions between non-digital and digital game play phenomenology.

Keywords: Analog Game, Communicable Diseases, Digital Game, Public Health, Systems Thinking, Vaccination

INTRODUCTION: GAMES AS TOOLS FOR STIMULATING SIGNIFICANT LEARNING AND ATTITUDE CHANGE

There has been growing enthusiasm among members of both learning science and game studies communities surrounding the notion that games can encourage a significant shift in players’ thinking and empower them with a plethora of new cognitive skills. One perspective that has gained particular traction in this regard is the argument that games can effectively facilitate a ‘systems thinking’ approach to real-life issues: that is, games can equip players with a greater understanding of, and appreciation for, the inter-relationships that exist between the individual elements of a system. To illustrate, Zimmer-
man (2007) has suggested that games have the capacity to instill a more advanced “systems literacy,” one that “stresses the importance of dynamic relationships, not fixed facts.” Similarly, Bogost (2007) claimed that games help players “learn to reflect on the natural or artificial design of systems in the material world,” and Gee (2004) designated well-designed games as “learning machines,” in part because they can facilitate systems thinking. Thus, in the games and learning literature, the argument that games can improve players’ systems thinking aptitude has inspired noteworthy levels of consensus and empirical support.

Likewise, work done over the past decade has demonstrated that games can change players’ attitudes and behaviors on important social issues. For example, Kato and colleagues’ study of the video game Re-Mission showed that playing the game inspired higher levels of adherence to treatment plans among adolescent cancer patients (Kato, Cole, Bradlyn, & Pollock, 2008). Gustafsson and colleagues (2009) showed that a digital game that aimed to teach players about energy use inspired a significant long-term drop in household energy consumption among players of the game. In their meta-analysis of studies investigating the effects of playing games with pro-health content, Baranowski and colleagues (2008) showed that out of the 27 studies they reviewed, a majority demonstrated evidence of significant changes in players’ pro-health attitudes and behaviors as a result of playing the focal games.

Prior work on the impact of games on cognition and behavior has been provocative, arguably even paradigm-shifting, but there is still much to learn about how designers can effectively model new ways of thinking or acting through their games or systems. One major unresolved issue is the basic distinction between analog and digital platforms—and the potentially divergent experiences and learning outcomes they offer players. As part of a recently completed empirical study testing the efficacy of a public health game, called POX: Save the People, created by our design labora-

tory (Kaufman, Flanagan, & Belman, under review), we sought to answer the fundamental question: does translating the same game from an analog to digital format influence players’ perceptions of the game and/or impact the effectiveness of the game as a tool for inspiring changes to attitudes and cognition? And, if such cross-platforms differences were to emerge, to what could we attribute them? In this paper, we present the design of the analog and digital versions of POX and an overview of the research approach we employed to address these provocative questions. We then offer a set of explanations for the unexpected finding that the digital version of the game, despite being a nearly identical translation of the analog version, proved significantly less effective at facilitating learning and belief change.

THE HISTORY AND DESIGN OF POX: SAVE THE PEOPLE

In 2010, our game design laboratory was asked by the Mascoma Valley Health Initiative, a New Hampshire public health organization, to create a board game that demonstrates the role vaccines play in preventing the spread of disease, for use in classrooms and health fairs. The first game produced from this charge, POX: Save the People (2010), is played on a game board of 81 (9x9) spaces, with each space representing one person in a community in which disease has just begun to spread. At the start of the game, two people are infected with a disease; they are represented by red spaces near the center of the board. Six yellow spaces on the board represent people with susceptible immune systems (e.g. pregnant women, babies, individuals with HIV or AIDS, and people with cancer), who cannot be vaccinated and, thus, are especially vulnerable (see Figure 1).

The game proceeds as players alternate drawing cards from the POX deck, which reveal either that the disease has spread in a particular direction or that a random outbreak has occurred. Each card also allows players to deploy public
7 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/article/lost-in-translation/93025?camid=4v1


www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content

Influence of Avatar Choice on Teacher Expectations and Perceptions of Student Success
www.igi-global.com/article/influence-avatar-choice-teacher-expectations/66070?camid=4v1a

The Design of Immersive Virtual Learning Environments Utilizing Problem-Based Learning Templates
Donna Russell (2016). Handbook of Research on Gaming Trends in P-12 Education (pp. 105-123).
www.igi-global.com/chapter/the-design-of-immersive-virtual-learning-environments-utilizing-problem-based-learning-templates/139800?camid=4v1a
Exploring Complex Intertextual Interactions in Video Games: Connecting Informal and Formal Education for Youth
Kathy Sanford, Timothy Frank Hopper and Jamie Burren (2016). Contemporary Research on Intertextuality in Video Games (pp. 108-128).
www.igi-global.com/chapter/exploring-complex-intertextual-interactions-in-video-games/157028?camid=4v1a

Diversity and Inclusion in Esports Programs in Higher Education: Leading by Example at UCI
www.igi-global.com/article/diversity-and-inclusion-in-esports-programs-in-higher-education/210645?camid=4v1a