Chapter 3
Efficient Summarization with Polytopes

Marina Litvak
Shamoon College of Engineering, Israel

Natalia Vanetik
Shamoon College of Engineering, Israel

ABSTRACT

The problem of extractive summarization for a collection of documents is defined as the problem of selecting a small subset of sentences so that the contents and meaning of the original document set are preserved in the extract in best possible way. In this chapter, the authors present a linear model for the problem of extractive text summarization, where they strive to obtain a summary that preserves the information coverage as much as possible in comparison to the original document set. The authors measure the information coverage in terms and reduce the summarization task to the maximum coverage problem. They construct a system of linear inequalities that describes the given document set and its possible summaries and translate the problem of finding the best summary to the problem of finding the point on a convex polytope closest to the given hyperplane. This re-formulated problem can be solved efficiently with the help of linear programming. The experimental results show the partial superiority of our introduced approach over other systems participated in the generic multi-document summarization tasks of the DUC 2002 and the MultiLing 2013 competitions.

INTRODUCTION

Automated text summarization is an active field of research attracting much attention from both academic and industrial communities. Summarization is important for IR systems since it helps to access large repositories of textual data efficiently by identifying the essence of a document and indexing a repository. Also, summarization provides end users shorter versions of the original documents that retain their most important points and, as result, saves time user needs for getting conclusions and decisions. Taxonomically, we distinguish between single-document, where a
summary per single document is generated, and
multi-document, where a summary per cluster of
related documents is generated, summarization.
Also, we distinguish between automatically gener-
ated *extract*— the most salient fragments of the
input document/s (e.g., sentences, paragraphs, etc.)
and *abstract*— re-formulated synopsis expressing
the main idea of the input document/s. Since gener-
ating abstracts requires a deep linguistic analysis
of the input documents, most existing summarizers
work in extractive manner (Mani and Maybury,
1999). Moreover, extractive summarization can
be applied to cross-lingual/multilingual domains
(Litvak et al., 2010).

In this paper we deal with the problem of
extractive summarization. Our method can be
generalized for both single-document and multi-
document summarization. Since the method
includes only very basic linguistic analysis, it can
be applied to multiple languages.

Formally speaking, in this paper we introduce:

- A novel text representation model expand-
ing a classic Vector Space Model (Salton et
al., 1975) to Hyperplane and Half-spaces;
- A distance measure between text and infor-
mation coverage we wish to preserve;
- A re-formulated extractive summarization
problem as an optimization task and its so-
lution using fractional linear programming.
- Multiple possible objective functions for
extractive summarization.

The main challenge of this paper is a new text
representation model making possible to represent
an exponential number of extracts without com-
puting them explicitly, and finding the optimal
one by simple optimizing an objective function
in polynomial time.

This chapter is organized as follows: next sec-
tion depicts related work, the following sections
describe problem setting and definitions, introduce
a new text representation model and a possible
distance measure between text and information
coverage, refer summarization task as a distance
optimization in a new text representation model
and introduce multiple objective functions. Ex-
periments section describes experiment setup
and results. The consequent conclusions and the
summary of the proposed future work follow in
the last section.

BACKGROUND

Extractive summarization can be considered as an
optimization problem in a very natural way—we
need to extract *maximum* information in *minimal*
number of words. Unfortunately, this problem
is known as NP-hard, and there is no known
polynomial algorithm which can tell, given a
solution, whether it is optimal. Many researchers
worked in this direction last decade, formulating
the summarization as optimization problem and
solving it using such *approximation* techniques
like a standard hill-climbing algorithm (Hassel
and Sjoergh, 2006), *A* search algorithm (Aker
et al., 2010), regression models (Ouyang et al.,
2011), and evolutionary algorithms (Alfonseca
and Rodriguez, 2003; Kallel et al., 2004; Liu et
al., 2006).

Some authors measure information by text
units like terms, N-grams, etc. and reduce sum-
marization to the maximum coverage problem
(Takamura and Okumura, 2009). The maximum
coverage model extracts sentences to a summary
to cover as many terms/N-grams as possible.
Despite a great performance (Takamura and
Okumura, 2009; Gillick and Favre, 2009) in sum-
marization field, maximum coverage problem, as
a private case of a general optimization task, is
known as NP-hard (Khuller et al., 1999). Some
works attempt to find a near-optimum solution
by greedy approach (Filatova, 2004; Wan, 2008;
Takamura and Okumura, 2009). Linear program-
ing helps to find a more accurate approximated

Recommend this product to your librarian:
www.igi-global.com/e-resources/library-recommendation/?id=79

Related Content

Multi-Attribute Utility Theory Based K-Means Clustering Applications
Jungmok Ma (2017). International Journal of Data Warehousing and Mining (pp. 1-12).
www.igi-global.com/article/multi-attribute-utility-theory-based-k-means-clustering-applications/181881?camid=4v1a

Contextualized Text OLAP Based on Information Retrieval
www.igi-global.com/article/contextualized-text-olap-based-on-information-retrieval/125648?camid=4v1a

Linguistic Rule Extraction from Support Vector Machine Classifiers
Xiuju Fu, Lipo Wang, GihGuang Hung and Liping Goh (2007). Research and Trends in Data Mining Technologies and Applications (pp. 276-290).
www.igi-global.com/chapter/linguistic-rule-extraction-support-vector/28428?camid=4v1a

Partially Supervised Classification: Based on Weighted Unlabeled Samples Support Vector Machine
Zhigang Liu, Wenzhong Shi, Deren Li and Qianqing Qin (2006). International Journal of Data Warehousing and Mining (pp. 42-56).
www.igi-global.com/article/partially-supervised-classification/1770?camid=4v1a