Benchmarking Data Mining Algorithms

Benchmarking Data Mining Algorithms

Balaji Rajagopalan (Oakland University, USA) and Ravi Krovi (University of Akron, USA)
Copyright: © 2002 |Pages: 11
DOI: 10.4018/jdm.2002010103
OnDemand PDF Download:
$37.50

Abstract

Data mining is the process of sifting through the mass of organizational (internal and external) data to identify patterns critical for decision support. Successful implementation of the data mining effort requires a careful assessment of the various tools and algorithms available. The basic premise of this study is that machine-learning algorithms, which are assumption free, should outperform their traditional counterparts when mining business databases. The objective of this study is to test this proposition by investigating the performance of the algorithms for several scenarios. The scenarios are based on simulations designed to reflect the extent to which typical statistical assumptions are violated in the business domain. The results of the computational experiments support the proposition that machine learning algorithms generally outperform their statistical counterparts under certain conditions. These can be used as prescriptive guidelines for the applicability of data mining techniques.

Complete Article List

Search this Journal:
Reset
Open Access Articles: Forthcoming
Volume 28: 4 Issues (2017): Forthcoming, Available for Pre-Order
Volume 27: 4 Issues (2016): 2 Released, 2 Forthcoming
Volume 26: 4 Issues (2015)
Volume 25: 4 Issues (2014)
Volume 24: 4 Issues (2013)
Volume 23: 4 Issues (2012)
Volume 22: 4 Issues (2011)
Volume 21: 4 Issues (2010)
Volume 20: 4 Issues (2009)
Volume 19: 4 Issues (2008)
Volume 18: 4 Issues (2007)
Volume 17: 4 Issues (2006)
Volume 16: 4 Issues (2005)
Volume 15: 4 Issues (2004)
Volume 14: 4 Issues (2003)
Volume 13: 4 Issues (2002)
Volume 12: 4 Issues (2001)
Volume 11: 4 Issues (2000)
Volume 10: 4 Issues (1999)
Volume 9: 4 Issues (1998)
Volume 8: 4 Issues (1997)
Volume 7: 4 Issues (1996)
Volume 6: 4 Issues (1995)
Volume 5: 4 Issues (1994)
Volume 4: 4 Issues (1993)
Volume 3: 4 Issues (1992)
Volume 2: 4 Issues (1991)
Volume 1: 2 Issues (1990)
View Complete Journal Contents Listing