How to Achieve Fuzzy Relational Databases Managing Fuzzy Data and Metadata

How to Achieve Fuzzy Relational Databases Managing Fuzzy Data and Metadata

Mohamed Ali Ben Hassine (Tunis El Manar University, Tunisia), Amel Grissa Touzi (Tunis El Manar University, Tunisia), José Galindo (University of Málaga, Spain) and Habib Ounelli (Tunis El Manar University, Tunisia)
Copyright: © 2008 |Pages: 30
DOI: 10.4018/978-1-59904-853-6.ch014
OnDemand PDF Download:
$37.50

Abstract

Fuzzy relational databases have been introduced to deal with uncertain or incomplete information demonstrating the efficiency of processing fuzzy queries. For these reasons, many organizations aim to integrate flexible querying to handle imprecise data or to use fuzzy data mining tools, minimizing the transformation costs. The best solution is to offer a smooth migration towards this technology. This chapter presents a migration approach from relational databases towards fuzzy relational databases. This migration is divided into three strategies. The first one, named “partial migration,” is useful basically to include fuzzy queries in classic databases without changing existing data. It needs some definitions (fuzzy metaknowledge) in order to treat fuzzy queries written in FSQL language (Fuzzy SQL). The second one, named “total migration,” offers in addition to the flexible querying, a real fuzzy database, with the possibility to store imprecise data. This strategy requires a modification of schemas, data, and eventually programs. The third strategy is a mixture of the previous strategies, generally as a temporary step, easier and faster than the total migration.

Key Terms in this Chapter

Fuzzy Query: Query with imprecision in the preferences about the desired items. These preferences may be set usually using fuzzy conditions in the queries. These fuzzy conditions include many possible forms like fuzzy preferences (e.g., I prefer bigger than cheaper), fuzzy labels (e.g., hot and cold), fuzzy comparators (e.g., approximately greater or equal than), fuzzy quantifiers (e.g., most or approximately the half), and so forth. One basic target in a fuzzy query is to rank the resulting items according to their fulfillment degree (usually a number between 0 and 1).

Fuzzy Metaknowledge Base (FMB): In a fuzzy database, the FMB is the extension of the data dictionary in order to store the fuzzy metadata, that is, information about fuzzy objects: fuzzy data type of each fuzzy attribute, the definition of labels, the margin for approximate values, the minimum distance for very separated values, fuzzy quantifiers, and so forth.

Legacy System: Existing system in a concrete context, for example, an existing database.

SQL (Structured Query Language): A computer language used to create, retrieve, update, and delete data from relational database management systems. SQL has been standardized by both ANSI and ISO. It includes DML (Data Management Language) and DDL (Data Definition Language). The statement for querying is the SELECT command.

FSQL (Fuzzy SQL): Extension of the popular language SQL that allows the management of fuzzy relational databases using the fuzzy logic. Basically, FSQL defines new extensions for fuzzy queries, extending the SELECT statement, but it also defines other statements. One of these fuzzy items is the definition of fuzzy comparators using mainly the possibility and necessity theory. Besides, FSQL allows the definition of linguistic labels (like hot, cold, tall, short, etc.) and fuzzy quantifiers (most, approximately 5, near the half, etc.). The more recent publication about FSQL is the book Fuzzy Databases: Modeling, Design and Implementation by Galindo et al. (2006).

Fuzzy Comparators: They are different techniques to compare two values using fuzzy logic. FSQL defines fuzzy comparators like FEQ (fuzzy equal), NFEQ (necessarily fuzzy equal), FGT (fuzzy greater than), NFGT (necessarily fuzzy greater than), and so forth.

FuzzyEER Model: Conceptual modeling tool, which extends the Enhanced Entity Relationship (EER) model with fuzzy semantics and fuzzy notations to represent imprecision and uncertainty in the entities, attributes, and relationships. The basic concepts introduced in this model are fuzzy attributes, fuzzy entities, fuzzy relations, fuzzy degrees, fuzzy degrees in specializations, and fuzzy constraints. A complete definition of this model is published in the book Fuzzy Databases: Modeling, Design and Implementation (Galindo et al., 2006).

Fuzzy Attribute: In a database context, a fuzzy attribute is an attribute of a row or object in a database, which allows querying by fuzzy information and/or storing this kind of information.

Fuzzy Migration: Migration from crisp databases towards fuzzy databases in order to introduce imprecise/fuzzy information in current information systems. This fuzzy migration consists in deriving a new database from a legacy database and in adapting data, metadata, and the software components accordingly. It does not only constitute the adoption of a new technology, but also the adoption of a new paradigm.

CDEG Function: Function defined in FSQL to compute the Compatibility DEGree of each row. This value is the fulfillment degree of each row to the fuzzy condition included in the WHERE clause of a SELECT statement in FSQL language. This function may be used with an attribute in the argument and then it computes the fulfillment degree for the specific attribute. If the argument is the symbol asterisk, *, then it computes the fulfillment degree using the whole condition, even whether it includes fuzzy conditions on different attributes.

Fuzzy Database: If a regular or classical database is a structured collection of records or data that is stored in a computer, a fuzzy database is a database which is able to deal with uncertain or incomplete information using fuzzy logic. There are many forms of adding flexibility in fuzzy databases. The simplest technique is to add a fuzzy membership degree to each record, that is, an attribute in the range [0,1]. However, there are other kinds of databases allowing fuzzy values to be stored in fuzzy attributes using fuzzy sets, possibility distributions, or fuzzy degrees associated to some attributes and with different meanings (membership degree, importance degree, fulfillment degree, etc.). Of course, fuzzy databases should allow fuzzy queries using fuzzy or nonfuzzy data, and there are some languages that allow these kinds of queries, like FSQL or SQLf. In synthesis, the research in fuzzy databases includes the following four areas: flexible querying in classical or fuzzy databases, extending classical data models in order to achieve fuzzy databases (fuzzy relational databases, fuzzy object-oriented databases, etc.), fuzzy data mining techniques, and applications of these advances in real databases.

Complete Chapter List

Search this Book:
Reset
Editorial Advisory Board
Program Committee
Table of Contents
Foreword
Maria Amparo Vila, Miguel Delgado
Preface
José Galindo
Acknowledgment
Chapter 1
José Galindo
This chapter presents an introduction to fuzzy logic and to fuzzy databases. With regard to the first topic, we have introduced the main concepts in... Sample PDF
Introduction and Trends to Fuzzy Logic and Fuzzy Databases
$37.50
Chapter 2
Slawomir Zadrozny, Guy de Tré, Rita de Caluwe, Janusz Kacprzyk
In reality, a lot of information is available only in an imperfect form. This might be due to imprecision, vagueness, uncertainty, incompleteness... Sample PDF
An Overview of Fuzzy Approaches to Flexible Database Querying
$37.50
Chapter 3
Balazs Feil, Janos Abonyi
This chapter aims to give a comprehensive view about the links between fuzzy logic and data mining. It will be shown that knowledge extracted from... Sample PDF
Introduction to Fuzzy Data Mining Methods
$37.50
Chapter 4
Didier Dubois, Henri Prade
The chapter advocates the interest of distinguishing between negative and positive preferences in the processing of flexible queries. Negative... Sample PDF
Handling Bipolar Queries in Fuzzy Information Processing
$37.50
Chapter 5
Noureddine Mouaddib, Guillaume Raschia, W. Amenel Voglozin, Laurent Ughetto
This chapter presents a discussion on fuzzy querying. It deals with the whole process of fuzzy querying, from the query formulation to its... Sample PDF
From User Requirements to Evaluation Strategies of Flexible Queries in Databases
$37.50
Chapter 6
P Bosc, A Hadjali, O Pivert
The idea of extending the usual Boolean queries with preferences has become a hot topic in the database community. One of the advantages of this... Sample PDF
On the Versatility of Fuzzy Sets for Modeling Flexible Queries
$37.50
Chapter 7
Guy De Tré, Marysa Demoor, Bert Callens, Lise Gosseye
In case-based reasoning (CBR), a new untreated case is compared to cases that have been treated earlier, after which data from the similar cases (if... Sample PDF
Flexible Querying Techniques Based on CBR
$37.50
Chapter 8
Bordogna Bordogna, Guiseppe Psaila
In this chapter, we present the Soft-SQL project whose goal is to define a rich extension of SQL aimed at effectively exploiting flexibility offered... Sample PDF
Customizable Flexible Querying in Classical Relational Databases
$37.50
Chapter 9
Cornelia Tudorie
The topic presented in this chapter refers to qualifying objects in some kinds of vague queries sent to relational databases. We want to compute a... Sample PDF
Qualifying Objects in Classical Relational Database Querying
$37.50
Chapter 10
Ludovic Liétard, Daniel Rocacher
This chapter is devoted to the evaluation of quantified statements which can be found in many applications as decision making, expert systems, or... Sample PDF
Evaluation of Quantified Statements Using Gradual Numbers
$37.50
Chapter 11
Angélica Urrutia, Leonid Tineo, Claudia Gonzalez
Actually, FSQL and SQLf are the main fuzzy logic based proposed extensions to SQL. It would be very interesting to integrate them with a standard... Sample PDF
FSQL and SQLf: Towards a Standard in Fuzzy Databases
$37.50
Chapter 12
Rallou Thomopoulos, Patrice Buche, Ollivier Haemmerlé
Within the framework of flexible querying of possibilistic databases, based on the fuzzy set theory, this chapter focuses on the case where the... Sample PDF
Hierarchical Fuzzy Sets to Query Possibilistic Databases
$37.50
Chapter 13
Troels Andreasen, Henrik Bulskov
The use of taxonomies and ontologies as a foundation for enhancing textual information base access has recently gained increased attention in the... Sample PDF
Query Expansion by Taxonomy
$37.50
Chapter 14
Mohamed Ali Ben Hassine, Amel Grissa Touzi, José Galindo, Habib Ounelli
Fuzzy relational databases have been introduced to deal with uncertain or incomplete information demonstrating the efficiency of processing fuzzy... Sample PDF
How to Achieve Fuzzy Relational Databases Managing Fuzzy Data and Metadata
$37.50
Chapter 15
Geraldo Xexéo, André Braga
We present CLOUDS, which stands for C++ Library Organizing Uncertainty in Database Systems, a tool that allows the creation of fuzzy reasoning... Sample PDF
A Tool for Fuzzy Reasoning and Querying
$37.50
Chapter 16
Aleksandar Takaci, Srdan Škrbic
This chapter introduces a way to extend the relational model with mechanisms that can handle imprecise, uncertain, and inconsistent attribute values... Sample PDF
Data Model of FRDB with Different Data Types and PFSQL
$37.50
Chapter 17
Carlos D. Barranco, Jesús R. Campaña, Juan M. Medina
This chapter introduces a fuzzy object-relational database model including fuzzy extensions of the basic object-relational databases constructs, the... Sample PDF
Towards a Fuzzy Object-Relational Database Model
$37.50
Chapter 18
Radim Belohlavek
Formal concept analysis is a particular method of analysis of relational data. Also, formal concept analysis provides elaborate mathematical... Sample PDF
Relational Data,Formal Concept Analysis, and Graded Attributes
$37.50
Chapter 19
Markus Schneider
Spatial database systems and geographical information systems are currently only able to support geographical applications that deal with crisp... Sample PDF
Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases
$37.50
Chapter 20
Yauheni Veryha, Jean-Yves Blot, Joao Coelho
There are many well-known applications of fuzzy sets theory in various fields of science and technology. However, we think that the area of maritime... Sample PDF
Fuzzy Classification in Shipwreck Scatter Analysis
$37.50
Chapter 21
Yan Chen, Graham H. Rong, Jianhua Chen
A Web-based fabric database is introduced in terms of its physical structure, software system architecture, basic and intelligent search engines... Sample PDF
Fabric Database and Fuzzy Logic Models for Evaluating Fabric Performance
$37.50
Chapter 22
R. A. Carrasco, F. Araque, A. Salguero, M. A. Vila
Soaring is a recreational activity and a competitive sport where individuals fly un-powered aircrafts known as gliders. The soaring location... Sample PDF
Applying Fuzzy Data Mining to Tourism Area
$37.50
Chapter 23
Andreas Meier, Günter Schindler, Nicolas Werro
In practice, information systems are based on very large data collections mostly stored in relational databases. As a result of information... Sample PDF
Fuzzy Classification on Relational Databases
$37.50
Chapter 24
Shyue-Liang Wang, Ju-Wen Shen, Tuzng-Pei Hong
Mining functional dependencies (FDs) from databases has been identified as an important database analysis technique. It has received considerable... Sample PDF
Incremental Discovery of Fuzzy Functional Dependencies
$37.50
Chapter 25
Radim Belohlavek, Vilem Vychodil
This chapter deals with data dependencies in Codd’s relational model of data. In particular, we deal with fuzzy logic extensions of the relational... Sample PDF
Data Dependencies in Codd's Relational Model with Similarities
$37.50
Chapter 26
Awadhesh Kumar Sharma, A. Goswami, D. K. Gupta
In this chapter, the concept of fuzzy inclusion dependencies (FIDas) in fuzzy databases is introduced and inference rules on such FIDas are derived.... Sample PDF
Fuzzy Inclusion Dependencies in Fuzzy Databases
$37.50
Chapter 27
Wai-Ho Au
The mining of fuzzy association rules has been proposed in the literature recently. Many of the ensuing algorithms are developed to make use of only... Sample PDF
A Distributed Algorithm for Mining Fuzzy Association Rules in Traditional Databases
$37.50
Chapter 28
Yi Wang
This chapter applies fuzzy logic to a dynamic causal mining (DCM) algorithm and argues that DCM, a combination of association mining and system... Sample PDF
Applying Fuzzy Logic in Dynamic Causal Mining
$37.50
Chapter 29
Céline Fiot
The explosive growth of collected and stored data has generated a need for new techniques transforming these large amounts of data into useful... Sample PDF
Fuzzy Sequential Patterns for Quantitative Data Mining
$37.50
Chapter 30
Hamid Haidarian Shahri
Entity resolution (also known as duplicate elimination) is an important part of the data cleaning process, especially in data integration and... Sample PDF
A Machine Learning Approach to Data Cleaning in Databases and Data Warehouses
$37.50
Chapter 31
Malcolm Beynon
The general fuzzy decision tree approach encapsulates the benefits of being an inductive learning technique to classify objects, utilising the... Sample PDF
Fuzzy Decision-Tree-Based Analysis of Databases
$37.50
Chapter 32
Malcolm Beynon
Outranking methods are a family of techniques concerned with ranking the preference for alternatives based on the criteria values that describe... Sample PDF
Fuzzy Outranking Methods Including Fuzzy PROMETHEE
$37.50
Chapter 33
J. I. Peláez, J. M. Doña, D. La Red
Missing data is often an actual problem in real data sets, and different imputation techniques are normally used to alleviate this problem.... Sample PDF
Fuzzy Imputation Method for Database Systems
$37.50
Chapter 34
Safìye Turgay
In this chapter, an agent-based fuzzy data mining structure was developed to process and evaluate data with an enlargement in the knowledge... Sample PDF
Intelligent Fuzzy Database Management Systems
$37.50
About the Editor
About the Contributors