Collaborative Virtual Environments and Multimedia Communication Technologies in Healthcare

Collaborative Virtual Environments and Multimedia Communication Technologies in Healthcare

Maria Andréia F. Rodrigues (Universidade de Fortaleza, Brazil)
DOI: 10.4018/978-1-60566-002-8.ch028
OnDemand PDF Download:


This chapter shows how recent computing technologies such as collaborative virtual environments, high speed networks and mobile devices can be used for training and learning in healthcare providing an environment with security and quality of service. A number of studies have been conducted so far in these research areas. However, the development of integrated care has proven to be a difficult task. Therefore, we aim also to discuss the promising directions of the current work and growing importance on these subjects. This includes comparative analysis of the most relevant computer systems and applications developed so far that integrate modern computing technologies and health care. We believe this work is considered to be primarily for the benefit of those who are working in the field of computer science and health care, as well academic community, practitioners, and those involved in the development, implementation and study of integrated care using new computing technologies.
Chapter Preview


In this chapter, we investigate how recent computing technologies such as collaborative virtual environments (CVEs), high speed networks and mobile devices can be used for training and learning in healthcare providing an environment with security and quality of service (QoS).

In our view, there is a considerable gap between the promises that the new computing technologies hold, and the expectations that they cause in the medical area, particularly, in the simulation and training of surgical procedures. The evidences indicate that these expectations should be fulfilled in the next few years. This partnership will require the improvement of several computational technologies (storage devices, high-speed networks, distributed systems for mobile environments, etc), as well as changes in the background of health professionals before their routine adoption. New areas of interdisciplinary research can emerge, such as multimedia surgical support, interventional radiology, and even less invasive surgical procedures. The development of system architectures utilizing new computing technologies that support interactive computer graphics and CVEs is another growing necessity. Examples are computer systems developed to support virtual training and learning, which are becoming more and more realistic (Blezek et al., 2000; Hosseini & Geordanas, 2001; Dev et al., 2002; Gunn et al., 2005a; DiMaio & Salcudean, 2005; Lee et al., 2006; Rodrigues et al., 2007). Some of these systems are used to construct a virtual world where users (trainer and trainees) can interact with one another and the environment in which they preside when performing training exercises.

Nowadays, geographically distributed computing technologies can be interconnected to create an integrated computing environment. Healthcare professionals in different places can collaborate using this environment. Collaborative virtual environments involve several participants working in a network, using a shared virtual environment to analyze the same object from different points of view, and in which the action of any participant is viewed by all others sharing the environment. In order to make communications more realistic the environment must supply voice, video and data multimedia applications. This will favor comprehension of the actual intent of each participant, thus improving the collaborative environment.

Networked computers and corresponding applications facilitate collaboration activities through a constellation of various tools (such as shared spaces, whiteboards, etc) having appropriate approaches to collaboration and social interactions. A World Wide Web tem proporcionado uma plataforma comum para que pessoas em qualquer parte do mundo possam interagir. Com o incremento do uso de dispositivos móveis, abre-se um vasto campo para novas pesquisas especialmente nas áreas de redes sem fio e colaboração distribuída. O aumento da disponibilidade de facilidades de comunicação tem provocado uma mudança no conceito de utilização de inúmeras aplicações, uma vez que dispositivos móveis possuem um comportamento diferente e oferecem possibilidades de interação diferentes, dependendo do contexto em que a aplicação está sendo usada. Para analisar estes diferentes cenários, muito esforço tem sido direcionado em pesquisas para mitigar possíveis ataques e para prover padrões mínimos de qualidade de serviço.

The World Wide Web has provided a collective platform where people in any part of the globe can interact. The increasing number of mobile devices in use has opened a vast field for new research, especially in the areas of wireless networks and distributed collaboration. The increase in availability of communications facilities has brought about changes in the concept of use of many applications, considering that mobile devices have a different behavior and offer different possibilities of interaction, depending on the context in which the application is being used. In order to analyze these different settings, a lot of effort has been directed to researches in mitigating possible attacks, and providing minimum standards of QoS.

Key Terms in this Chapter

Security: It is the practice of protecting and preserving private resources and information on the network from unauthorized modification or destruction.

Mobility: It is the ability of mobile devices to move or change the position.

Collaborative Virtual Environments (CVEs): CVEs are used to construct a virtual world where users can interact with one another and the environment in which they preside in order to perform, for example, a training exercise.

Distributed Collaboration: VR has been employed to allow geographically distributed people to do more than simply hear and see each other. For instance, VR technology is being used to develop highly interactive shared virtual environments, graphically orientated, for local and distance training and learning.

Haptic Feedback: A crucial sensorial modality in VR applications. Haptics means both force feedback (simulating object hardness, weight, inertia, etc) and tactile feedback (simulating surface contact geometry, smoothness, slippage, and temperature) (Burdea, 1999).

Quality of Service (QoS): QoS refers to control mechanisms that can provide different priority to different users or data flows, or guarantee a certain level of performance to a data flow in accordance with requests from the application program.

Haptics: It refers to technology which interfaces the user via the sense of touch by applying forces, vibrations and/or motions to the user.

Wireless: Communication or transfer of information over a distance without the use of wires. It is generally used for mobile devices.

Virtual Reality (VR): VR entails the use of advanced technologies, including computers and multimedia peripherals, to produce “virtual” environments that users perceive as comparable to real world objects. It offers great potential as a technology for computer-based training and simulation. It may be delivered to the user via a variety of input/output devices such as screen monitors, head-mounted displays, data gloves, etc.

Virtual Environments (VEs): VEs can be used to simulate aspects of the real world which are not physically available to the users of the application.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Athina A. Lazakidou
Athina A. Lazakidou
Chapter 1
Sanjay P. Sood, Sandhya Keeroo, Victor W.A. Mbarika, Nupur Prakash, Ankur Seth
It is claimed that seeds of ‘medical informatics’ were sown in 1960s.From this time until the 1990s experts have described the discipline as... Sample PDF
Medical Informatics: Thirty Six Peer-Reviewed Shades
Chapter 2
D. John Doyle
E-health technology has started to become commonplace in the clinical world, with practitioners setting up their own Web sites to disseminate... Sample PDF
Medical Privacy and the Internet
Chapter 3
Ana Ferreira, Ricardo Cruz-Correia, Luís Antunes, David Chadwick
This chapter reports the authors’ experiences regarding security of the electronic medical record (EMR). Although the EMR objectives are to support... Sample PDF
Security of Electronic Medical Records
Chapter 4
György Surján
This chapter outlines the history of medical classifications in a general cultural context. Classification is a general phenomenon in science and... Sample PDF
The Cultural History of Medical Classifications
Chapter 5
Spyros Kitsiou
A fundamental requirement for achieving continuity of care is commonly accepted to be the integration and interoperability of different clinical... Sample PDF
Overview and Analysis of Electronic Health Record Standards
Chapter 6
Graham D. Bodie, Mohan J. Dutta, Ambar Basu
This chapter overviews an integrative model of e-health use that connects social disparities at the population level with individual characteristics... Sample PDF
The Integrative Model of E-Health Use
Chapter 7
Firat Kart
In this chapter we describe a distributed e-healthcare system that uses service oriented architecture as a basis for designing, implementing... Sample PDF
A Distributed E-Healthcare System
Chapter 8
Davor Mucic
In this chapter the author gives the short review over wide range of telepsychiatry applications. Furthermore, describes completely new and... Sample PDF
Telepsychiatry Within European E-Health
Chapter 9
Azizah Omar
In this chapter the author discusses several marketing principles and issues related to pitfalls and successes of Telehealth application in the case... Sample PDF
Pitfalls and Successes of a Web-Based Wellness Program
Chapter 10
Isabel de la Torre Díez
This chapter describes a Web -based application to store and exchange Electronic Health Records (EHR) and medical images in Ophthalmology... Sample PDF
A Web-Based Application to Exchange Electronic Health Records and Medical Images in Ophthalmology
Chapter 11
Mario Ceresa
This chapter mainly focuses on biomedical knowledge representation and its use in biomedicine. It first illustrates the existent more relevant... Sample PDF
Clinical and Biomolecular Ontologies for E-Health
Chapter 12
Roger Tait, Gerald Schaefer
The registration of corresponding patient volumes is often a pre-requisite for medical imaging tasks. Accurate alignment, however, usually results... Sample PDF
Distributed Medical Volume Registration
Chapter 13
Bill Ag. Drougas
Internet today is one of the most useful tools for information, education and business or entertainment. It is one of the modern technology tools... Sample PDF
Electronic Commerce for Health Products Services-Problems- Quality and Future
Chapter 14
Christos Bountis
This chapter introduces and reviews the concept of distributed knowledge management within the Healthcare environment and between Healthcare and... Sample PDF
Distributed Knowledge Management in Healthcare
Chapter 15
Jelena Vucetic
This paper describes business and technological challenges and solutions for a successful emergency telemedicine venture called MediComm. Its... Sample PDF
An Analysis of a Successful Emergency Telemedicine Venture
Chapter 16
Tammara Massey, Foad Dabiri, Roozbeh Jafari, Hyduke Noshadi, Philip Brisk, Majid Sarrafzadeh
This chapter introduces reconfigurable design techniques for light-weight medical systems. The research presented in this chapter demonstrates how... Sample PDF
Reconfigurable Embedded Medical Systems
Chapter 17
Konstantinos Perakis
The evolutions in the field of telecommunications technologies, with the robustness and the fidelity these new systems provide, have significantly... Sample PDF
Third Generation (3G) Cellular Networks in Telemedicine: Technological Overview, Applications, and Limitations
Chapter 18
Anton V. Vladzymyrskyy
This chapter introduces usage of telemedicine consultations in daily clinical practice. Author has describe process of teleconsultation, sample... Sample PDF
Telemedicine Consultations in Daily Clinical Practice: Systems, Organisation, Efficiency
Chapter 19
Cheon-Pyo Lee, J. P. Shim
Ubiquitous healthcare has become possible with rapid advances in information and communication technologies. Ubiquitous healthcare will bring about... Sample PDF
Ubiquitous Healthcare: Radio Frequency Identification (RFID) in Hospitals
Chapter 20
Rafael Capilla, Alfonso del Río, Miguel Ángel Valero, José Antonio Sánchez
This chapter deals with the conceptualization, design and implementation of an m-health solution to support ubiquitous, integrated and continuous... Sample PDF
Agile Patient Care with Distributed M-Health Applications
Chapter 21
Žilbert Tafa
This chapter describes the very actual issues on mobile health (M-H) and home care (H-C) telecare systems, reviewing state of the art as well as... Sample PDF
Mobile Health Applications and New Home Care Telecare Systems: Critical Engineering Issues
Chapter 22
José Antonio Seoane Fernández, Juan Luis Pérez Ordóñez, Noha Veiguela Blanco
This chapter presents an architecture for the integration of various algorithms for digital image processing (DIP) into web-based information... Sample PDF
A New System for the Integration of Medical Imaging Processing Algorithms into a Web Environment
Chapter 23
Daniel Welfer
This chapter discusses the concept of open-source picture archiving and communication systems (i.e. PACS), which are low cost, and easy to... Sample PDF
PACS Based on Open-Source Software Components
Chapter 24
Carolin Kaiser
This chapter introduces a case based reasoning (CBR) system for customizing treatment processes. The CBR system enables the generating of inpatient... Sample PDF
Case Based Reasoning for Customizing Treatment Processes
Chapter 25
I. Apostolakis, A. Chryssanthou, I. Varlamis
A significant issue in health related applications is protecting a patient’s profile data from unauthorized access. In the case of telemedicine... Sample PDF
A Holistic Perspective of Security in Health Related Virtual Communities
Chapter 26
Stamatia Ilioudi
This chapter aims to present various virtual learning environments for medical purposes in the world. More than ever, medical students and... Sample PDF
Virtual Learning Environments in Health
Chapter 27
Jelena Vucetic
In the last decade, advances in medicine, telemedicine, computer technologies, information systems, Web applications, robotics and... Sample PDF
Multimedia Distance Learning Solutions for Surgery
Chapter 28
Maria Andréia F. Rodrigues
This chapter shows how recent computing technologies such as collaborative virtual environments, high speed networks and mobile devices can be used... Sample PDF
Collaborative Virtual Environments and Multimedia Communication Technologies in Healthcare
Chapter 29
Tiffany A. Koszalka, Bradley Olson
A major issue facing medical education training programs across the USA is the recent advent of universal mandatory duty hour limitations and the... Sample PDF
Transforming a Pediatrics Lecture Series to Online Instruction
Chapter 30
Anastasia N. Kastania, Stelios Zimeras
In this chapter the authors investigate telehealth quality and reliability assurance. Various models and standards can be applied to assess software... Sample PDF
Quality and Reliability Aspects in Telehealth Systems
Chapter 31
Kleopatra Alamantariotou
Recent statistics show that the World Wide Web has now grown to over 100 million sites: a phenomenal expansion in only 15 years (Mulligan 2007). It... Sample PDF
Quality of Health Information on the Internet
Chapter 32
Kashif Hussain
This chapter provides a practical approach to computerized system validation (CSV) for the pharmaceutical organizations for the users dealing with... Sample PDF
A Practical Approach to Computerized System Validation
Chapter 33
Bill Ag Drougas, Maria Sevdali
Ergophysiology as a division of the Physiology and helps us today to understand what happens in the human body and movement and how we are able to... Sample PDF
Organization and Evaluation of Experimental Measurements of Ergophysiological Data with the Method of SF12V2
Chapter 34
Daniele Apiletti
Current advances in sensing devices and wireless technologies are providing a high opportunity for improving care quality and reducing the medical... Sample PDF
Ubiquitous Risk Analysis of Physiological Data
Chapter 35
Manfred Doepp
In our energy diagnostic department we noticed more and more cases with irrational stimulus-reaction- patterns and with a chaotic regulation state... Sample PDF
Chaotization of Human Systems by Technical Electromagnetic Fields
Chapter 36
Mary Schmeida, Ramona McNeal
This chapter is an analysis of demographic variables influencing policy outcomes with online health information searches in the general U.S. public.... Sample PDF
Demographic Differences in Telehealth Policy Outcomes
About the Contributors