Digital Watermarking Capacity and Detection Error Rate

Digital Watermarking Capacity and Detection Error Rate

Fan Zhang (Henan University, China)
Copyright: © 2009 |Pages: 20
DOI: 10.4018/978-1-60566-262-6.ch014
OnDemand PDF Download:


The digital multimedia, including text, image, graphics, audio, video, and so forth, has become a main way for information communication along with the popularization of Internet and the development of multimedia techniques. How to provide copyright protection has drawn extensive attention in recent years. As a main method for copyright protection, digital watermarking has been widely studied and applied. In this chapter we discuss the important properties of watermarks, the capacity, and the detection error rate. The watermarking system is analyzed based on the channel capacity and error rate of the communication system, and the relation between the detection error rate with the capacity and payload capacity is derived. This chapter also introduces a new analysis method of the watermarking capacity, which is based on the theories of attractors and attraction basin of artificial neural network. The attraction basin of neural network decides the upper limit of watermarking, and the attractors of neural network decide the lower limit of watermarking. According to the experimental results, the detection error rate of watermark is mainly influenced by the watermark average energy and the watermarking capacity. The error rate rises with the increase of watermarking capacity. When the channel coding is used, the watermarking error rate drops with the decrease of the payload capacity of watermarking.
Chapter Preview


Digital representations of copyrighted material such as movies, songs, and photographs offer many advantages. However, the fact that an unlimited number of perfect copies can be illegally produced is a serious threat to the rights of content owners. Until recently, the primary tool available to help protect content owners’ rights has been encryption. Encryption protects content during the transmission of the data from the sender to receiver. However, after receipt and subsequent decryption, the data is no longer protected and is in the clear. Watermarking compliments encryption. A digital watermark is a piece of information that is hidden directly in media content, in such a way that it is imperceptible to a human observer, but easily detected by a computer. The principal advantage of this is that the content is inseparable from the watermark.

Until the early nineties, digital watermarking techniques had received very much less attention from the research community and from industry than cryptography, but this has changed rapidly since. The first academic conference on the subject was organized in 1996. It was followed by several other conferences focusing on information hiding as well as watermarking.

The main driving force is concern over protecting copyright; as audio, video and other works become available in digital form, it may be that the ease with which perfect copies can be made will lead to large-scale unauthorized copying which will undermine the music, film, book and software publishing industries. There has therefore been significant recent research into watermarking (hidden copyright messages) and fingerprinting (hidden serial numbers or a set of characteristics that tend to distinguish an object from other similar objects); the idea is that the latter can be used to detect copyright violators and the former to prosecute them. But there are many other applications of increasing interest to both the academic and business communities, including anonymous communications, covert channels in computer systems, detection of hidden information, steganography, etc.

Today, cryptographical techniques have reached a level of sophistication such that properly encrypted communications can be assumed secure well beyond the useful life of the information transmitted. In fact, it’s projected that the most powerful algorithms using multi kilobit key lengths could not be comprised through brute force, even if all the computing power worldwide for the next 20 years was focused on the attack. Of course the possibility exists that vulnerabilities could be found, or computing power breakthroughs could occur, but for most users in most applications, current cryptographic techniques are generally sufficient.

Watermarking is very similar to steganography in a number of respects. Both seek to embed information inside a cover message with little to no degradation of the cover-object. Watermarking however adds the additional requirement of robustness. An ideal steganographic system would embed a large amount of information, perfectly securely with no visible degradation to the cover object. An ideal watermarking system however would embed an amount of information that could not be removed or altered without making the cover object entirely unusable. As a side effect of these different requirements, a watermarking system will often trade capacity and perhaps even some security for additional robustness.

A digital watermark embeds an imperceptible signal into data such as audio, video and images, for a variety of purposes, including captioning and copyright control. As watermarking is increasingly used for a wide variety of applications, various properties of watermarks, such as how they respond to common signal transformations or deliberate attack, have become important considerations. In this chapter we discuss the important properties of watermarks, the capacity and the detection error rate.

The watermarking capacity of digital image is the number of bits that can be embedded in a given host image. The performance of watermarking detection is measured by the bit error rate (BER) or probability of error PB. The bit error rate is the number of error bits in the total length of information messages bits. The detection reliability of watermarking closely correlates to two other parameters, which are the watermarking capacity and robustness. The robustness denotes the performance towards intentional and unintentional attacks. The main requirement of robustness is to resist different kind of distortions introduced by common processing and/or malicious attacks while satisfying the imperceptibility criteria.

Key Terms in this Chapter

Attractors: Attractors of Hopfield network represent the stored patterns.

Bit Error Rate (BER): The bit error rate of watermarking detection is the number of error bits in the total length of information messages bits.

Payload Capacity: It is the size (in bits) of the watermark messages actually embedded, associated to a certain decoding error rate.

Theoretical Capacity: It is a theoretical limit on the amount of error-free emendable watermark messages, or inversely, on the minimum probability of error attainable for the given messages.

Hopfield Neural Network: The Hopfield neural network is a recurrent neural network that stores information in a dynamically stable configuration.

Human Vision System (HVS): The Human Vision System (HVS) describes the human vision mechanism such as the spatial frequency orientation, the sensitivity on local contrast and the masking.

Watermarking Capacity: The watermarking capacity of digital image is the number of bits that can be embedded in a given host image.

Digital Watermark: A digital watermark embeds an imperceptible signal into data such as audio, video and images, for a variety of purposes, including captioning and copyright control.

Basin of Attraction: The basin of attraction is the set of states in the system within which almost all states flow to one attractor.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Borko Furht
Shiguo Lian, Yan Zhang
Shiguo Lian, Yan Zhang
Chapter 1
Pramod A. Jamkhedkar, Gregory L. Heileman
Rights expression languages (RELs) form a central component of digital rights management (DRM) systems. The process of development of RELs... Sample PDF
Rights Expression Languages
Chapter 2
Deepali Brahmbhatt, Mark Stamp
This chapter presents a digital rights management (DRM) system designed for streaming media. A brief, general introduction to DRM is also provided... Sample PDF
Digital Rights Management for Streaming Media
Chapter 3
Jean-Henry Morin
This chapter introduces and discusses much needed alternatives to the traditional either/or debate on total security of secure multimedia... Sample PDF
Rethinking DRM Using Exception Management
Chapter 4
Mercè Serra Joan, Bert Greevenbosch, Anja Becker, Harald Fuchs
This chapter gives an overview of the Open Mobile AllianceTM Digital Rights Management (OMA DRM) standard, which allows for the secure distribution... Sample PDF
Overview of OMA Digital Rights Management
Chapter 5
Hugo Jonker, Sjouke Mauw
The use of Digital Rights Management (DRM) systems involves several stakeholders, such as the content provider, the license provider, and the user... Sample PDF
Discovering the Core Security Requirements of DRM Systems by Means of Objective Trees
Chapter 6
Pallavi Priyadarshini, Mark Stamp
Peer-to-peer (P2P) networks have proliferated and become ubiquitous. A school of thought has emerged that harnessing the established user-base and... Sample PDF
Digital Rights Management for Untrusted Peer-to-Peer Networks
Chapter 7
L. Badia, A. Erta, U. Malesci
Traditional analog video surveillance systems technology has recently become inadequate to face the massive demand of security systems consisting of... Sample PDF
Pervasive Video Surveillance Systems Over TCP/IP Networks
Chapter 8
Ramya Venkataramu, Mark Stamp
Digital Rights Management (DRM) technology is used to control access to copyrighted digital content. Apple employs a DRM system known as Fairplay in... Sample PDF
P2PTunes: A Peer-to-Peer Digital Rights Management System
Chapter 9
Nicolas Anciaux, Luc Bouganim, Philippe Pucheral
This chapter advocates the convergence between Access Control (AC) models, focusing on the granularity of sharing, and Digital Right Management... Sample PDF
A Hardware Approach for Trusted Access and Usage Control
Chapter 10
Ionut Florescu
Regarding fundamental protocols in cryptography, the Diffie-Hellman (Diffie and Hellman, 1976) public key exchange protocol is one of the oldest and... Sample PDF
A Summary of Recent and Old Results on the Security of the Diffie-Hellman Key Exchange Protocol in Finite Groups
Chapter 11
Guojun Wang, Yirong Wu, Geyong Min, Ronghua Shi
Secret sharing aims at distributing and sharing a secret among a group of participants efficiently. In this chapter, we propose a plane-based access... Sample PDF
Secret Sharing with k-Dimensional Access Structure
Chapter 12
Supavadee Aramvith, Rhandley D. Cajote
Presently, both wireless communications and multimedia communications have experienced unequaled rapid growth and commercial success. Building on... Sample PDF
Wireless Video Transmission
Chapter 13
M. Hassan Shirali-Shahreza, Mohammad Shirali-Shahreza
Establishing hidden communication is an important subject of discussion that has gained increasing importance recently, particularly with the... Sample PDF
A Survey of Information Hiding
Chapter 14
Fan Zhang
The digital multimedia, including text, image, graphics, audio, video, and so forth, has become a main way for information communication along with... Sample PDF
Digital Watermarking Capacity and Detection Error Rate
Chapter 15
Digital Watermarking  (pages 277-297)
Aidan Mooney
As Internet usage continues to grow, people are becoming more aware of the need to protect the display and presentation of digital documents.... Sample PDF
Digital Watermarking
Chapter 16
Pradeep K. Atrey, Abdulmotaleb El Saddik, Mohan Kankanhalli
Digital video authentication has been a topic of immense interest to researchers in the past few years. Authentication of a digital video refers to... Sample PDF
Digital Video Authentication
Chapter 17
Tieyan Li
The multimedia community is moving from monolithic applications to more flexible and scalable proliferate solutions. Security issues such as access... Sample PDF
Flexible Multimedia Stream Authentication
Chapter 18
K-G Stenborg
Media that is distributed digitally can be copied and redistributed illegally. Embedding an individual watermark in the media object for each... Sample PDF
Scalable Distribution of Watermarked Media
Chapter 19
Hafiz Malik
This chapter provides critical analysis of current state-of-the-art in steganography. First part of the this chapter provides the classification of... Sample PDF
Critical Analysis of Digital Steganography
Chapter 20
Esther Palomar, Juan M.E. Tapiador, Julio C. Hernandez-Castro, Arturo Ribagorda
Perhaps the most popular feature offered by Peer-to-Peer (P2P) networks is the possibility of having several replicas of the same content... Sample PDF
Secure Content Distribution in Pure P2P
Chapter 21
Andreas U. Schmidt, Nicolai Kuntze
Security in the value creation chain hinges on many single components and their interrelations. Trusted Platforms open ways to fulfil the pertinent... Sample PDF
Trust in the Value-Creation Chain of Multimedia Goods
Chapter 22
Goo-Rak Kwon, Sung-Jea Ko
The objective of this chapter introduces an advanced encryption of MP3 and MPEG-4 coder with a quality degradation-based security model. For the MP3... Sample PDF
Copyright Protection of A/V Codec for Mobile Multimedia Devices
Chapter 23
Frank Y. Shih, Yi-Ta Wu
Steganography is the art of hiding secret data inside other innocent media file. Steganalysis is the process of detecting hidden data which are... Sample PDF
Digital Steganography Based on Genetic Algorithm
Chapter 24
Guangjie Liu, Shiguo Lian, Yuewei Dai, Zhiquan Wang
Image steganography is a common form of information hiding which embeds as many message bits into images and keep the introduced distortion... Sample PDF
Adaptive Image Steganography Based on Structural Similarity Metric
Chapter 25
Shiguo Lian
Video watermarking technique embeds some information into videos by modifying video content slightly. The embedded information, named watermark, may... Sample PDF
A Survey on Video Watermarking
Chapter 26
Minglei Liu, Ce Zhu
Digital watermarking is a useful and powerful tool for multimedia security such as copyright protection, tamper proofing and assessment, broadcast... Sample PDF
Multiple Description Coding with Application in Multimedia Watermarking
Chapter 27
Hsuan T. Chang, Chih-Chung Hsu
This chapter introduces a pioneer concept in which multiple images are simultaneously considered in the compression and secured distribution... Sample PDF
Fractal-Based Secured Multiple-Image Compression and Distribution
About the Contributors