Parallelizing Genetic Algorithms: A Case Study

Parallelizing Genetic Algorithms: A Case Study

Iker Gondra (St. Francis Xavier University, Canada)
Copyright: © 2008 |Pages: 24
DOI: 10.4018/978-1-59904-705-8.ch012
OnDemand PDF Download:
$37.50

Abstract

Genetic Algorithms (GA), which are based on the idea of optimizing by simulating the natural processes of evolution, have proven successful in solving complex problems that are not easily solved through conventional methods. This chapter introduces their major steps, operators, theoretical foundations, and problems. A parallel GA is an extension of the classical GA that takes advantage of a GA’s inherent parallelism to improve its time performance and reduce the likelihood of premature convergence. An overview of different models for parallelizing GAs is presented along with a discussion of their main advantages and disadvantages. A case study: A parallel GA for finding Ramsey Numbers is then presented. According to Ramsey Theory, a sufficiently large system (no matter how random) will always contain highly organized subsystems. The role of Ramsey numbers is to quantify some of these existential theorems. Finding Ramsey numbers has proven to be a very difficult task that has led researchers to experiment with different methods of accomplishing this task. The objective of the case study is both to illustrate the typical process of GA development and to verify the superior performance of parallel GAs in solving some of the problems (e.g., premature convergence) of traditional GAs.

Complete Chapter List

Search this Book:
Reset
Table of Contents
Preface
Dimitris Vrakas, Ioannis Vlahavas
Acknowledgment
Chapter 1
Johan Baltié, Eric Bensana, Patrick Fabiani, Jean-Loup Farges, Stéphane Millet, Philippe Morignot, Bruno Patin, Gerald Petitjean, Gauthier Pitois, Jean-Clair Poncet
This chapter deals with the issues associated with the autonomy of vehicle fleets, as well as some of the dimensions provided by an Artificial... Sample PDF
Multi-Vehicle Missions: Architecture and Algorithms for Distributed Online Planning
$37.50
Chapter 2
Antonio Garrido, Eva Onaindia
The recent advances in AI automated planning algorithms have allowed to tackle with more realistic problems that involve complex features such as... Sample PDF
Extending Classical Planning for Time: Research Trends in Optimal and Suboptimal Temporal Planning
$37.50
Chapter 3
Roman Barták
Solving combinatorial optimization problems such as planning, scheduling, design, or configuration is a non-trivial task being attacked by many... Sample PDF
Principles of Constraint Processing
$37.50
Chapter 4
Alexander Mehler
We describe a simulation model of language evolution which integrates synergetic linguistics with multiagent modelling. On the one hand, this... Sample PDF
Stratified Constraint Satisfaction Networks in Synergetic Multi-Agent Simulations of Language Evolution
$37.50
Chapter 5
Zhao Lu, Jing Sun
As an innovative sparse kernel modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression... Sample PDF
Soft-constrained Linear Programming Support Vector Regression for Nonlinear Black-box Systems Identification
$37.50
Chapter 6
Ioannis Partalas, Dimitris Vrakas, Ioannis Vlahavas
This article presents a detailed survey on Artificial Intelligent approaches, that combine Reinforcement Learning and Automated Planning. There is a... Sample PDF
Reinforcement Learning and Automated Planning: A Survey
$37.50
Chapter 7
Stasinos Konstantopoulos, Rui Camacho, Nuno A. Fonseca, Vítor Santos Costa
This chapter introduces Inductive Logic Programming (ILP) from the perspective of search algorithms in Computer Science. It first briefly considers... Sample PDF
Induction as a Search Procedure
$37.50
Chapter 8
Kiruthika Ramanathan, Sheng Uei Guan
In this chapter we present a recursive approach to unsupervised learning. The algorithm proposed, while similar to ensemble clustering, does not... Sample PDF
Single- and Multi-order Neurons for recursive unsupervised learning
$37.50
Chapter 9
Malcolm J. Beynon
This chapter investigates the effectiveness of a number of objective functions used in conjunction with a novel technique to optimise the... Sample PDF
Optimising Object Classification: Uncertain Reasoning-Based Analysis Using CaRBS Systematic Research Algorithms
$37.50
Chapter 10
P. Vasant, N. Barsoum, C. Kahraman, G.M Dimirovski
This chapter proposes a new method to obtain optimal solution using satisfactory approach in uncertain environment. The optimal solution is obtained... Sample PDF
Application of Fuzzy Optimization in Forecasting and Planning of Construction Industry
$37.50
Chapter 11
Malcolm J. Beynon
This chapter investigates the modelling of the ability to improve the rank position of an alternative in relation to those of its competitors.... Sample PDF
Rank Improvement Optimization Using PROMETHEE and Trigonometric Differential Evolution
$37.50
Chapter 12
Iker Gondra
Genetic Algorithms (GA), which are based on the idea of optimizing by simulating the natural processes of evolution, have proven successful in... Sample PDF
Parallelizing Genetic Algorithms: A Case Study
$37.50
Chapter 13
Daniel Rivero, Miguel Varela, Javier Pereira
A technique is described in this chapter that makes it possible to extract the knowledge held by previously trained artificial neural networks. This... Sample PDF
Using Genetic Programming to Extract Knowledge from Artificial Neural Networks
$37.50
About the Contributors