Using the IMS LD Standard to Describe Learning Designs

Using the IMS LD Standard to Describe Learning Designs

Rob Koper (Open University of The Netherlands, The Netherlands) and Yongwu Miao (Open University of The Netherlands, The Netherlands)
DOI: 10.4018/978-1-59904-861-1.ch003
OnDemand PDF Download:


IMS learning design (IMSLD) is an open standard that can be used to specify a wide range of pedagogical strategies in computer-interpretable models. Such models then can be played in any learning design (LD) compatible execution environment to support teachers and students to conduct online teaching–learning. This chapter introduces the basic knowledge required to effectively use LD. First of all, we present fundamental principles behind LD. Then, we introduce main concepts and their relations in LD and discuss some technical issues about how to make a learning design executable in a computer-based environment. Finally, how to model learning designs using LD is explained through demonstrating the whole procedure to model a use case in Extensible Markup Language (XML). We expect that the readers of this chapter can apply LD to create simple learning designs and understand learning designs with sophisticated features.
Chapter Preview


IMS learning design (IMSLD, 2003) is an open standard that is used to code a wide variety of digital courses (called “units of learning” or “units of study”) in a formal, semantic, interoperable, and machine readable way. In comparison with other e-learning technical specifications like SCORM (sharable content object reference model), in which a learning process is modeled as a sequence of learning material, LD is strong in the support for the wide range of modern pedagogical approaches that are used today, like active learning, collaborative learning, adaptive learning, and competency based learning. It can also be used to support more informal learning that takes place in communities of practice and learning communities (Koper & Manderveld, 2004a; Koper & Olivier, 2004b; Koper & Tattersall, 2005).

Digital courses developed with LD differ in many aspects from the ones we are currently using in the regular Learning Management Systems (LMSs). The major difference is that it enables an author to specify the complete learning design of a course with all its details explicitly, instead of selecting a restricted set of hardwired designs in the LMS. This means that the designer can specify:

  • 1.

    the desired type of learning activities, including the related content and services;

  • 2.

    the desired sequence of learning activities, including adaptation and personalization aspects;

  • 3.

    the desired way that learning activities are marked as completed (e.g., through self-assessment, a classical test or exam, by a teacher, an advanced assessment procedure or when a certain group result is attained);

  • 4.

    the desired interaction between different persons in different roles (learners, teachers, designers, experts, assessors, mentors, etc.) and the interaction between these roles and learning objects and learning services (chats, wikis, forums, etc.);

  • 5.

    the desired reporting of (aggregated) results to an e-portfolio or a student administration, and so forth.

The authored courses can be used for many different course runs in many different situations. Also, before they are used they can be adapted to local needs (e.g., by deleting some of the learning activities or changing aspects of the workflow).

The basic challenge with LD is in the authoring aspects: you can design highly complex courses and implement many different pedagogical interactions, but this requires that you are able to design these interactions (most teachers are not highly skilled as instructional designers) and that you will need to learn to design and to use LD tools in order to produce the learning designs. In this chapter, we will introduce you into the fundamental principles behind LD. To give you a kind of advanced organisor: the basic ideas behind LD before it was developed was the question whether it would be possible to make a kind of standard notation, like the music notation, that enables you to write down learning designs (compose music) at one place and to interpret the learning designs in many places for different users (different musicians, orchestras, bands, etc., all can reproduce songs and music that has been written in a rather similar way). LD is introduced as such a kind of standard notation, which is machine readable (although it is also human readable) to help the users of computers to organize, adapt, and orchestrate their different learning and teaching activities and the access to learning objects and services to an efficient, effective, and synchronized whole for each individual user in any role. In order to explain how to create learning designs using LD clearly, we present the whole procedure to model a learning design by using an use case. We further discuss the issues to model complicated learning designs using LD. In summary, the purpose of this chapter is to answer three questions: why develop LD, what is LD, and how does one use LD?

Key Terms in this Chapter

Learning Design Language: A notation that describes learning designs in a machine interpretable way. The most obvious use of such a learning design language is that it can be used to codify the learning design of a course (as a flow of activities), and then this code is interpreted with a runtime engine that can repeat the course over and over again for different users in different situations, adapted to the characteristics of the individual users in the course. When the course is designed well, the different actors do not have to be concerned much about the management of activities and information flow within the course: this is done automatically. Also, the adaptation rules that are specified are applied automatically and consistently within the course runs. Furthermore, the necessary content and services are set up automatically and made available to the users at the right moment.

Learning Design: A description of a sequence of learning activities that learners undertake to attain some learning objectives, including the resources and support mechanisms required to help learners to complete these activities and their temporary relations.

Unit of Learning: An abstract term used to refer to any delimited piece of education or training, such as a course, a module, a lesson, and the like. It represents more than just a collection of ordered resources to learn; it includes a variety of prescribed activities, assessments, services, and support facilities provided by teachers, trainers, and other staff members. In the context of LD, it refers to the result of modeling a learning design.

IMS Learning Design: A specification released by the IMS Global Learning Consortium. It is a learning design language which can be used to specify a wide range of pedagogy strategies. The approach has the advantage over alternatives in that only one set of learning design and runtime tools then need to be implemented in order to support the desired wide range of pedagogies.

Complete Chapter List

Search this Book:
Table of Contents
Tom Carey
Lori Lockyer, Sue Bennett, Shirley Agostinho, Barry Harper
Lori Lockyer, Sue Bennett, Shirley Agostinho, Barry Harper
Chapter 1
Shirley Agostinho
The term “learning design” is gaining momentum in the e-learning literature as a concept for supporting academics to model and share teaching... Sample PDF
Learning Design Representations to Document, Model, and Share Teaching Practice
Chapter 2
Isobel Falconer, Allison Littlejohn
Practice models are generic approaches to the structuring and orchestration of learning activities for pedagogic purposes, intended to promote... Sample PDF
Representing Models of Practice
Chapter 3
Rob Koper, Yongwu Miao
IMS learning design (IMSLD) is an open standard that can be used to specify a wide range of pedagogical strategies in computer-interpretable models.... Sample PDF
Using the IMS LD Standard to Describe Learning Designs
Chapter 4
David Griffiths, Oleg Liber
The IMS LD specification is internally complex and has been used in a number of different ways. As a result users who have a basic understanding of... Sample PDF
Opportunities, Achievements, and Prospects for Use of IMS LD
Chapter 5
Franca Garzotto, Symeon Retalis
“A design pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that... Sample PDF
A Critical Perspective on Design Patterns for E-Learning
Chapter 6
Sherri S. Frizell, Roland Hübscher
Design patterns have received considerable attention for their potential as a means of capturing and sharing design knowledge. This chapter provides... Sample PDF
Using Design Patterns to Support E-Learning Design
Chapter 7
Peter Goodyear, Dai Fei Yang
This chapter provides an overview of recent research and development (R&D) activity in the area of educational design patterns and pattern... Sample PDF
Patterns and Pattern Languages in Educational Design
Chapter 8
Gráinne Conole
The chapter provides a theoretical framework for understanding learning activities, centering on two key aspects: (1) the capture and representation... Sample PDF
The Role of Mediating Artefacts in Learning Design
Chapter 9
Elizabeth Masterman
This chapter uses activity theory to construct a framework for the design and deployment of pedagogic planning tools. It starts by noting the impact... Sample PDF
Activity Theory and the Design of Pedagogic Planning Tools
Chapter 10
Barry Harper, Ron Oliver
This chapter describes the development of a taxonomy of learning designs based on a survey of 52 innovative ICT-using projects that formed the basis... Sample PDF
Developing a Taxonomy for Learning Designs
Chapter 11
Carmel McNaught, Paul Lam, Kin-Fai Cheng
The chapter will describe an expert review process used at The Chinese University of Hong Kong. The mechanism used involves a carefully developed... Sample PDF
Using Expert Reviews to Enhance Learning Designs
Chapter 12
Matthew Kearney, Anne Prescott, Kirsty Young
This chapter reports on findings from a recent project situated in the area of preservice teacher education. The project investigated prospective... Sample PDF
Investigating Prospective Teachers as Learning Design Authors
Chapter 13
Paul Hazlewood, Amanda Oddie, Mark Barrett-Baxendale
IMS Learning Design (IMS LD) is a specification for describing a range of pedagogic approaches. It allows the linking of pedagogical structure... Sample PDF
Using IMS Learning Design in Educational Situations
Chapter 14
Robert McLaughlan, Denise Kirkpatrick
Decision-making processes in relation to complex natural resources require recognition and accommodation of diverse and competing perspectives in a... Sample PDF
Online Role-Based Learning Designs for Teaching Complex Decision Making
Chapter 15
Garry Hoban
Digital animations are complex to create and are usually made by experts for novices to download from Web sites or copy from DVDs and CDs to use as... Sample PDF
Facilitating Learner-Generated Animations with Slowmation
Chapter 16
Yongwu Miao, Daniel Burgos, David Griffiths, Rob Koper
Group interaction has to be meticulously designed to foster effective and efficient collaborative learning. The IMS Learning Design specification... Sample PDF
Representation of Coordination Mechanisms in IMS LD
Chapter 17
Johannes Strobel, Gretchen Lowerison, Roger Côté, Philip C. Abrami, Edward C. Bethel
In this chapter, we describe the process of modeling different theory-, research-, and best-practicebased learning designs into IMS-LD, a... Sample PDF
Modeling Learning Units by Capturing Context with IMS LD
Chapter 18
Daniel Burgos, Hans G.K. Hummel, Colin Tattersall, Francis Brouns, Rob Koper
This chapter presents some design guidelines for collaboration and participation in blended learning networks. As an exemplary network, we describe... Sample PDF
Design Guidelines for Collaboration and Participation with Examples from the LN4LD (Learning Network for Learning Design)
Chapter 19
Tom Boyle
This chapter argues that good design has to be at the heart of developing effective learning objects. It briefly outlines the “knowledge... Sample PDF
The Design of Learning Objects for Pedagogical Impact
Chapter 20
Margaret Turner
This chapter introduces an approach to writing content for online learning over networked media. It argues that few resources currently utilise the... Sample PDF
Visual Meaning Management for Networked Learning
Chapter 21
Christina Gitsaki
Due to the increasingly diverse student population in multicultural nations such as Australia, the U.S., Canada, and the UK, educators are faced... Sample PDF
Modification of Learning Objects for NESB Students
Chapter 22
Daniel Churchill, John Gordon Hedberg
The main idea behind learning objects is that they are to exist as digital resources separated from the learning task in which they are used. This... Sample PDF
Learning Objects, Learning Tasks, and Handhelds
Chapter 23
Peter Freebody, Sandy Muspratt, David McRae
The question addressed in this chapter is: What is the evidence for the effects of online programs of learning objects on motivation and learning?... Sample PDF
Technology, Curriculum, and Pedagogy in the Evaluation of an Online Content Program in Australasia
Chapter 24
David Lake, Kate Lowe, Rob Phillips, Rick Cummings, Renato Schibeci
This chapter provides a model to analyse the effectiveness and efficiency of Learning Objects being used in primary and secondary schools by... Sample PDF
Effective Use of Learning Objects in Class Environments
Chapter 25
Robert McCormick, Tomi Jaakkola, Sami Nurmi
Most studies on reusable digital learning materials, Learning Objects (LOs), relate to their use in universities. Few empirical studies exist to... Sample PDF
A European Evaluation of the Promises of LOs
Chapter 26
Tomi Jaakkola, Sami Nurmi
There has been a clear lack of rigorous empirical evidence on the effectiveness of learning objects (LOs) in education. This chapter reports the... Sample PDF
Instructional Effectiveness of Learning Objects
Chapter 27
Robert McCormick
This chapter will examine the approach taken in the evaluation of a large-scale feasibility trial of the production, distribution, and use of... Sample PDF
Evaluating Large-Scale European LO Production, Distribution, and Use
Chapter 28
John C Nesbit, Tracey L. Leacock
The Learning Object Review Instrument (LORI) is an evaluation framework designed to support collaborative critique of multimedia learning resources.... Sample PDF
Collaborative Argumentation in Learning Resource Evaluation
Chapter 29
Philippe Martin, Michel Eboueya
This chapter first argues that current approaches for sharing and retrieving learning objects or any other kinds of information are not efficient or... Sample PDF
For the Ultimate Accessibility and Reusability
Chapter 30
Sue Bennett, Dominique Parrish, Geraldine Lefoe, Meg O’Reilly, Mike Keppell, Robyn Philip
As the notion of learning objects has grown in popularity, so too has interest in how they should be stored to promote access and reusability. A key... Sample PDF
A Needs Analysis Framework for the Design of Digital Repositories in Higher Education
Chapter 31
William Bramble, Mariya Pachman
Reusable learning objects (LOs) constitute a promising approach to the development of easily accessible, technologically sound, and curriculum... Sample PDF
Costs and Sustainability of Learning Object Repositories
Chapter 32
Kristine Elliott, Kevin Sweeney, Helen Irving
This chapter reports the authors’ experiences of developing a learning design to teach scientific inquiry, of integrating the learning design with... Sample PDF
A Learning Design to Teach Scientific Inquiry
Chapter 33
Lisa Lobry de Bruyn
This chapter explores through a case study approach of a tertiary-level unit on Land Assessment for Sustainable Use, the connections between three... Sample PDF
Adapting Problem-Based Learning to an Online Learning Environment
Chapter 34
Tan Wee Chuen, Baharuddin Aris, Mohd Salleh Abu
This chapter aims to guide the readers through the design and development of a prototype Web-based learning system based on the integration of... Sample PDF
Learning Objects and Generative Learning for Higher Order Thinking
Chapter 35
Sebastian Foti
The author describes the work of Dr. Mary Budd Rowe and the establishment of an early learning object databases. Extensive training with K-12... Sample PDF
Applying Learning Object Libraries in K-12 Settings
Chapter 36
L. K. Curda, Melissa A. Kelly
We present guidelines for designing and developing a repository for the storage and exchange of instructional resources, as well as considerations... Sample PDF
Guidelines for Developing Learning Object Repositories
Chapter 37
Sandra Wills, Anne McDougall
This study tracks the uptake of online role play in Australia from 1990 to 2006 and the affordances to its uptake. It examines reusability, as one... Sample PDF
Reusability of Online Role Play as Learning Objects or Learning Designs
Chapter 38
Lori Lockyer, Lisa Kosta, Sue Bennett
Health professional education is changing to meet the demands of a limited workforce and a focus on community-based clinical training. The change... Sample PDF
An Analysis of Learning Designs that Integrate Patient Cases in Health Professions Education
Chapter 39
Mohan Chinnappan
The shift in the way we visualise the nature of mathematics and mathematics learning has presented educational technologists with new challenges in... Sample PDF
Reconceptualisation of Learning Objects as Meta-Schemas
Chapter 40
Henk Huijser
This chapter provides an in depth discussion of the issues involved in integrating learning design and learning objects into generic Web sites. It... Sample PDF
Designing Learning Objects for Generic Web Sites
Chapter 41
Morag Munro, Claire Kenny
E-learning standards are a contentious topic amongst educators, designers, and researchers engaged in the development of learning objects and... Sample PDF
Standards for Learning Objects and Learning Designs
Chapter 42
Eddy Boot, Luca Botturi, Andrew S. Gibbons, Todd Stubbs
In developing modern instructional software, learning designs are used to formalize descriptions of roles, activities, constraints, and several... Sample PDF
Supporting Decision Making in Using Design Languages for Learning Designs and Learning Objects
Chapter 43
Gilbert Paquette, Olga Mariño, Karin Lundgren-Cayrol, Michel Léonard
This chapter summarizes the work on instructional engineering and educational modeling accomplished since 1992 at the LICEF Research Center of... Sample PDF
Principled Construction and Reuse of Learning Designs
About the Contributors