Ant Colony Optimization for Use in Content Based Image Retrieval

Ant Colony Optimization for Use in Content Based Image Retrieval

Konstantinos Konstantinidis (Democritus University of Thrace, Greece), Georgios Ch. Sirakoulis (Democritus University of Thrace, Greece) and Ioannis Andreadis (Democritus University of Thrace, Greece)
DOI: 10.4018/978-1-60566-310-4.ch018
OnDemand PDF Download:
$37.50

Abstract

The aim of this chapter is to provide the reader with a Content Based Image Retrieval (CBIR) system which incorporates AI through ant colony optimization and fuzzy logic. This method utilizes a two-stage fuzzy modified ant colony algorithm employing in parallel low-level features such as color, texture and spatial information which are extracted from the images themselves. The results prove the system to be more efficient compared to popular and contemporary methods such as the histogram intersection, joint histograms and the scalable color histogram of the MPEG-7 standard. However, due to the high computational burden of the AI methods the system is quite slow when implemented in software. Thus in order to speed up the whole process the reader is also provided with the hardware implementation analysis of the whole system. The increase in speed is phenomenal.
Chapter Preview
Top

Introduction

Due to the increase in usage and production of digital images and large volume image databases, a need has risen for organizing them according to their content so that they can easily be retrieved. A simple though effective way to index and retrieve images is through query by example, which means that the user has to present an image to the system and the latter searches for others alike by extracting features from the query image and comparing them to the ones stored in the database. The extraction of meaningful features as well as the actual retrieval of image data based on illustrative content queries is a challenging issue actively confronted by a large number of scientists (Del Bimbo, 1999). Effective retrieval of image data is important for general multimedia information management. For an image to be retrievable, it has to be indexed by its content. Color can provide significant information about the content of an image. Among the methods that use color as a retrieval feature, the most popular one is probably that of color histograms (Del Bimbo, 1999; Swain & Ballard, 2001). The color histogram is a global statistical feature which describes the color distribution for a given image (Gonzalez & Woods, 2002). Other low-level features widely used by researchers for indexing and retrieval of images, except color are texture and shape (Del Bimbo, 1999). In order to exploit the strong aspects of each of these features while constructing an optimum and robust CBIR system, a plethora of methods, introduced over time, have been based on combinations of these features (Cheng and Chen, 2003; Pass & Zabih, 1999).

In this chapter the synergy of such features, specifically color, texture, and spatial information is performed by use of a modified artificial ant colony. This specific type of insect was selected since studies showed that when in groups, the ants show self-organization as well as adaptation which are desirable attributes in image retrieval. Artificial ant colonies have previously been used in text based search engines (Kouzas et al, 2006) but also in texture classification (Ramos et al, 2002) and color matching (Huang et al, 2006). Here, a modified ant colony algorithm is applied in order to optimize the process of the retrieval of general interest images. The main thrust of the proposed method is a two stage modified ant colony algorithm employing in parallel color, texture and spatial information which are extracted from the images themselves.

The study of ant colony behavior and of their self-organizing abilities (Bonabeau et al, 2000) inspired the algorithm, although in this chapter they are approached in a more unorthodox (modified) way. Normally the ants exit their nest searching for the shortest path to the food. In this approach the nest is regarded to be the most similar image to the query one while the ants search for the closest food surrounding the nest, which are actually the images in the database. Unlike other methods which employ ant colony optimization techniques, in this case we try to establish which few, from a plethora of food, are closest to the nest by altering the position of the nest in two separate consecutive stages. In the first stage, the synergy of the low-level descriptors is considered to be a swarm of ants, seeking for the optimal path to the surrounding “food”, whilst settling pheromone on each of the paths in a “high similarity” area of 1,000 images. The terrain on which the ants move is predefined through three low-level features extracted from the query image. In the second stage the terrain changes as additional queries are made by using the highest ranked images from the first stage as new nests. In each of the queries in the first and second stages the ants disperse pheromone on the paths to the food that is supposedly closest to the nest. A Mamdani inference fuzzy system (Mamdani & Assilian, 1999) is employed in order to extract the aggregate amount of pheromone in respect to each query since none of them is considered to be of the same importance to the next.

Key Terms in this Chapter

Image Processing: A technique through which various mathematical operations are applied to the data of a digital image in order to enhance its quality or to extract information from its content.

Image Retrieval: The process of browsing, searching and retrieving images from a large database of digital images.

Hardware: A general term that refers to the physical components of a computing system.

Fuzzy Logic: Is derived from fuzzy set theory dealing with reasoning that is approximate rather than precisely deduced from classical predicate logic. It can be thought of as the application side of fuzzy set theory dealing with well thought out real world expert values for a complex problem.

Field Programmable Gate Arrays: Semiconductor devices containing programmable logic blocks and programmable interconnects. Logic blocks can be programmed to perform the function of basic logic gates or more complex combinational functions such as decoders or simple mathematical functions.

Ant Colony Optimization: A probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. They are inspired by the self-organizing abilities of real ants.

Feature Extraction: The process of detection, isolation and extraction of various desired portions or features of a digitized image.

Complete Chapter List

Search this Book:
Reset
Editorial Advisory Board
Table of Contents
Foreword
Lipo Wang
Preface
Hongwei Mo
Chapter 1
Fabio Freschi, Carlos A. Coello Coello, Maurizio Repetto
This chapter aims to review the state of the art in algorithms of multiobjective optimization with artificial immune systems (MOAIS). As it will be... Sample PDF
Multiobjective Optimization and Artificial Immune Systems: A Review
$37.50
Chapter 2
Jun Chen, Mahdi Mahfouf
The primary objective of this chapter is to introduce Artificial Immune Systems (AIS) as a relatively new bio-inspired optimization technique and to... Sample PDF
Artificial Immune Systems as a Bio-Inspired Optimization Technique and Its Engineering Applications
$37.50
Chapter 3
Licheng Jiao, Maoguo Gong, Wenping Ma
Many immue-inspired algorithms are based on the abstractions of one or several immunology theories, such as clonal selection, negative selection... Sample PDF
An Artificial Immune Dynamical System for Optimization
$37.50
Chapter 4
Malgorzata Lucinska, Slawomir T. Wierzchon
Multi-agent systems (MAS), consist of a number of autonomous agents, which interact with one-another. To make such interactions successful, they... Sample PDF
An Immune Inspired Algorithm for Learning Strategies in a Pursuit-Evasion Game
$37.50
Chapter 5
Luis Fernando Niño Vasquez, Fredy Fernando Muñoz Mopan, Camilo Eduardo Prieto Salazar, José Guillermo Guarnizo Marín
Artificial Immune Systems (AIS) have been widely used in different fields such as robotics, computer science, and multi-agent systems with high... Sample PDF
Applications of Artificial Immune Systems in Agents
$37.50
Chapter 6
Xingquan Zuo
Inspired from the robust control principle, a robust scheduling method is proposed to solve uncertain scheduling problems. The uncertain scheduling... Sample PDF
An Immune Algorithm Based Robust Scheduling Methods
$37.50
Chapter 7
Fabio Freschi, Maurizio Repetto
The increasing cost of energy and the introduction of micro-generation facilities and the changes in energy production systems require new... Sample PDF
Artificial Immune System in the Management of Complex Small Scale Cogeneration Systems
$37.50
Chapter 8
Krzysztof Ciesielski, Mieczyslaw A. Klopotek, Slawomir T. Wierzchon
In this chapter the authors discuss an application of an immune-based algorithm for extraction and visualization of clusters structure in large... Sample PDF
Applying the Immunological Network Concept to Clustering Document Collections
$37.50
Chapter 9
Xiangrong Zhang, Fang Liu
The problem of feature selection is fundamental in various tasks like classification, data mining, image processing, conceptual learning, and so on.... Sample PDF
Feature Selection Based on Clonal Selection Algorithm: Evaluation and Application
$37.50
Chapter 10
Yong-Sheng Ding, Xiang-Feng Zhang, Li-Hong Ren
Future Internet should be capable of extensibility, survivability, mobility, and adaptability to the changes of different users and network... Sample PDF
Immune Based Bio-Network Architecture and its Simulation Platform for Future Internet
$37.50
Chapter 11
Tao Gong
Static Web immune system is an important applicatiion of artificial immune system, and it is also a good platform to develop new immune computing... Sample PDF
A Static Web Immune System and Its Robustness Analysis
$37.50
Chapter 12
Alexander O. Tarakanov
Based on mathematical models of immunocomputing, this chapter describes an approach to spatio-temporal forecast (STF) by intelligent signal... Sample PDF
Immunocomputing for Spatio-Temporal Forecast
$37.50
Chapter 13
Fu Dongmei
In engineering application, the characteristics of the control system are entirely determined by the system controller once the controlled object... Sample PDF
Research of Immune Controllers
$37.50
Chapter 14
Xiaojun Bi
In fact, image segmentation can be regarded as a constrained optimization problem, and a series of optimization strategies can be used to complete... Sample PDF
Immune Programming Applications in Image Segmentation
$37.50
Chapter 15
Xin Wang, Wenjian Luo, Zhifang Li, Xufa Wang
A hardware immune system for the error detection of MC8051 IP core is designed in this chapter. The binary string to be detected by the hardware... Sample PDF
A Hardware Immune System for MC8051 IP Core
$37.50
Chapter 16
Mark Burgin, Eugene Eberbach
There are different models of evolutionary computations: genetic algorithms, genetic programming, etc. This chapter presents mathematical... Sample PDF
On Foundations of Evolutionary Computation: An Evolutionary Automata Approach
$37.50
Chapter 17
Terrence P. Fries
Path planning is an essential component in the control software for an autonomous mobile robot. Evolutionary strategies are employed to determine... Sample PDF
Evolutionary Path Planning for Robot Navigation Under Varying Terrain Conditions
$37.50
Chapter 18
Konstantinos Konstantinidis, Georgios Ch. Sirakoulis, Ioannis Andreadis
The aim of this chapter is to provide the reader with a Content Based Image Retrieval (CBIR) system which incorporates AI through ant colony... Sample PDF
Ant Colony Optimization for Use in Content Based Image Retrieval
$37.50
Chapter 19
Miroslav Bursa, Lenka Lhotska
The chapter concentrates on the use of swarm intelligence in data mining. It focuses on the problem of medical data clustering. Clustering is a... Sample PDF
Ant Colonies and Data Mining
$37.50
Chapter 20
Bo-Suk Yang
This chapter describes a hybrid artificial life optimization algorithm (ALRT) based on emergent colonization to compute the solutions of global... Sample PDF
Artificial Life Optimization Algorithm and Applications
$37.50
Chapter 21
Martin Macaš, Lenka Lhotská
A novel binary optimization technique is introduced called Social Impact Theory based Optimizer (SITO), which is based on social psychology model of... Sample PDF
Optimizing Society: The Social Impact Theory Based Optimizer
$37.50
Chapter 22
James F. Peters, Shabnam Shahfar
The problem considered in this chapter is how to use the observed behavior of organisms as a basis for machine learning. The proposed approach for... Sample PDF
Ethology-Based Approximate Adaptive Learning: A Near Set Approach
$37.50
Chapter 23
Dingju Zhu
Parallel computing is more and more important for science and engineering, but it is not used so widely as serial computing. People are used to... Sample PDF
Nature Inspired Parallel Computing
$37.50
Chapter 24
Tang Mo, Wang Kejun, Zhang Jianmin, Zheng Liying
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is... Sample PDF
Fuzzy Chaotic Neural Networks
$37.50
About the Contributors