Blind Channel Estimation in Space-Time Block Coded Systems

Blind Channel Estimation in Space-Time Block Coded Systems

Javier Vía (University of Cantabria, Spain), Ignacio Santamaría (University of Cantabria, Spain) and Jesús Ibáñez (University of Cantabria, Spain)
DOI: 10.4018/978-1-59904-988-5.ch008
OnDemand PDF Download:


This chapter analyzes the problem of blind channel estimation under Space-Time Block Coded transmissions. In particular, a new blind channel estimation technique for a general class of space-time block codes is proposed. The method is solely based on the second-order statistics of the observations, and its computational complexity reduces to the extraction of the main eigenvector of a generalized eigenvalue problem. Additionally, the identifiability conditions associated to the blind channel estimation problem are analyzed, which is exploited to propose a new transmission technique based on the idea of code diversity or combination of different codes. This technique resolves the ambiguities in most of the practical cases, and it can be reduced to a non-redundant precoding consisting in a single set of rotations or permutations of the transmit antennas. Finally, the performance of the proposed techniques is illustrated by means of several simulation examples.
Chapter Preview


In the last ten years, since the well known work of Alamouti (1998), and the later generalization by Tarokh et al. (1999), space-time block coding (STBC) has emerged as a promising technique to exploit the spatial diversity in multiple-input multiple-output (MIMO) communication systems. A common assumption for most of the STBCs is that perfect channel state information (CSI) is available at the receiver, which has motivated an increasing interest in blind techniques (Ammar and Ding, 2006, 2007, Larsson et al., 2003, Ma et al., 2006, Shahbazpanahi et al., 2006-Stoica and Ganesan, 2003, Swindlehurst and Leus, 2002). The main advantage of blind approaches resides in their ability to avoid the penalty in bandwidth efficiency or signal to noise ratio (SNR) associated, respectively, to training based techniques (Hassibi and Hochwald, 2003, Naguib et al., 1998, Pohl et al., 2005), or differential schemes (Ganesan and Stoica, 2002, Hochwald and Sweldens, 2000, Hughes, 2000, Jafarkhani and Tarokh, 2001, Tarokh and Jafarkhani, 2000, Zhu and Jafarkhani, 2005). On the other hand, these advantages come at the cost of an increase in both computational complexity and latency, which can be seen as a direct consequence of the common assumption about the coherence time of the MIMO channel.

Blind channel estimation or blind decoding techniques can be divided into two groups depending on whether they exploit the higher-order statistics (HOS) or the second-order statistics (SOS) of the signals. The main advantage of SOS-based approaches consists in their reduced computational complexity and independency of the specific signal constellation. Unfortunately, most of the blind techniques have been proposed for the particular case of orthogonal STBCs (OSTBCs) (Ammar and Ding, 2006, Larsson et al., 2003, Ma et al., 2006, Shahbazpanahi et al., 2006-Stoica and Ganesan, 2003), and the number of methods for more general settings is rather scarce (Shahbazpanahi et al., 2006, Swindlehurst, 2002, Swindlehurst and Leus, 2002). Furthermore, it can be easily proven that some of these techniques are affected by additional indeterminacies to those associated to the blind channel estimation problem.

In this chapter, the blind channel estimation problem is formulated for a general class of STBCs, and a new SOS-based technique is proposed. The method reduces to the extraction of the main eigenvector of a generalized eigenvalue problem (GEV), it does not introduce additional indeterminacies to those of the blind channel estimation problem, and it can be easily extended to multiuser settings. Additionally, we provide an identifiability analysis for the general STBC case, where some intuitive necessary conditions are obtained, and in the particular OSTBC case, we present several sufficient conditions for blind channel identifiability, which shed some light into previous numerical results obtained by other authors. Finally, we propose several techniques for the solution of the indeterminacies. On one hand, in the OSTBC case the ambiguities can be easily avoided by exploiting the HOS, the correlation properties of the sources, or by slightly reducing the transmission rate. On the other hand, we propose a new technique for the general STBC case. The proposed method is based on the general idea of code diversity, which consists in combining different STBCs. However, it can be reduced to a non-redundant precoding consisting in a single rotation or permutation of the transmit antennas, which comes at virtually no computational expense at the transmitter. Unlike previous approaches, the code diversity technique is able to avoid the ambiguities in most of the cases without any penalty in terms of transmission rate nor capacity.

Complete Chapter List

Search this Book:
Table of Contents
Jack H. Winters
Chen Sun, Jun Cheng, Takashi Ohira
Chapter 1
Constantin Siriteanu, Steven D. Blostein
This chapter unifies the principles and analyses of conventional signal processing algorithms for receive-side smart antennas, and compares their... Sample PDF
Eigencombining: A Unified Approach to Antenna Array Signal Processing
Chapter 2
Zhu Liang Yu, Meng Hwa Er, Wee Ser, Chen Huawei
In this chapter, we first review the background, basic principle and structure of adaptive beamformers. Since there are many robust adaptive... Sample PDF
Robust Adaptive Beamforming
Chapter 3
Sheng Chen
Adaptive beamforming is capable of separating user signals transmitted on the same carrier frequency, and thus provides a practical means of... Sample PDF
Adaptive Beamforming Assisted ReceiverAdaptive Beamforming
Chapter 4
Thomas Hunziker
Many common adaptive beamforming methods are based on a sample matrix inversion (SMI). The schemes can be applied in two ways. The sample covariance... Sample PDF
On the Employment of SMI Beamforming for Cochannel Interference Mitigation in Digital Radio
Chapter 5
Hideki Ochiai, Patrick Mitran, H. Vincent Poor, Vahid Tarokh
In wireless sensor networks, the sensor nodes are often randomly situated, and each node is likely to be equipped with a single antenna. If these... Sample PDF
Random Array Theory and Collaborative Beamforming
Chapter 6
W. H. Chin, C. Yuen
Space-time block coding is a way of introducing multiplexing and diversity gain in wireless systems equipped with multiple antennas. There are... Sample PDF
Advanced Space-Time Block Codes and Low Complexity Near Optimal Detection for Future Wireless Networks
Chapter 7
Xiang-Gen Xia, Genyuan Wang, Pingyi Fan
Modulated codes (MC) are error correction codes (ECC) defined on the complex field and therefore can be naturally combined with an intersymbol... Sample PDF
Space-Time Modulated Codes for MIMO Channels with Memory
Chapter 8
Javier Vía, Ignacio Santamaría, Jesús Ibáñez
This chapter analyzes the problem of blind channel estimation under Space-Time Block Coded transmissions. In particular, a new blind channel... Sample PDF
Blind Channel Estimation in Space-Time Block Coded Systems
Chapter 9
Chen Sun, Takashi Ohira, Makoto Taromaru, Nemai Chandra Karmakar, Akifumi Hirata
In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the... Sample PDF
Fast Beamforming of Compact Array Antenna
Chapter 10
Eddy Taillefer, Jun Cheng, Takashi Ohira
This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact... Sample PDF
Direction of Arrival Estimation with Compact Array Antennas: A Reactance Switching Approach
Chapter 11
Santana Burintramart, Nuri Yilmazer, Tapan K. Sarkar, Magdalena Salazar-Palma
This chapter presents a concern regarding the nature of wireless communications using multiple antennas. Multi-antenna systems are mainly developed... Sample PDF
Physics of Multi-Antenna Communication Systems
Chapter 12
MIMO Beamforming  (pages 240-263)
Qinghua Li, Xintian Eddie Lin, Jianzhong ("Charlie") Zhang
Transmit beamforming improves the performance of multiple-input multiple-output antenna system (MIMO) by exploiting channel state information (CSI)... Sample PDF
MIMO Beamforming
Chapter 13
Biljana Badic, Jinho Choi
This chapter introduces joint beamforming (or precoding) and space-time coding for multiple input multiple output (MIMO) channels. First, we explain... Sample PDF
Joint Beamforming and Space-Time Coding for MIMO Channels
Chapter 14
Zhendong Zhou, Branka Vucetic
This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically... Sample PDF
Adaptive MIMO Systems with High Spectral Efficiency
Chapter 15
Joakim Jaldén, Björn Ottersten
This chapter takes a closer look at a class of MIMO detention methods, collectively referred to as relaxation detectors. These detectors provide... Sample PDF
Detection Based on Relaxation in MIMO Systems
Chapter 16
Wolfgang Utschick, Pedro Tejera, Christian Guthy, Gerhard Bauch
This chapter discusses four different optimization problems of practical importance for transmission in point to multipoint networks with a multiple... Sample PDF
Transmission in MIMO OFDM Point to Multipoint Networks
Chapter 17
Salman Durrani, Marek E. Bialkowski
This chapter discusses the use of smart antennas in Code Division Multiple Access (CDMA) systems. First, we give a brief overview of smart antenna... Sample PDF
Smart Antennas for Code Division Multiple Access Systems
Chapter 18
Aimin Sang, Guosen Yue, Xiaodong Wang, Mohammad Madihian
In this chapter, we consider a cellular downlink packet data system employing the space-time block coded (STBC) multiple- input-multiple-output... Sample PDF
Cross-Layer Performance of Scheduling and Power Control Schemes in Space-Time Block Coded Downlink Packet Systems
Chapter 19
Yimin Zhang, Xin Li, Moeness G. Amin
This chapter introduces the concept of multi-beam antenna (MBA) in mobile ad hoc networks and the recent advances in the research relevant to this... Sample PDF
Mobile Ad Hoc Networks Exploiting Multi-Beam Antennas
Chapter 20
Toru Hashimoto, Tomoyuki Aono
The technology of generating and sharing the key as the representative application of smart antennas is introduced. This scheme is based on the... Sample PDF
Key Generation System Using Smart Antenna
Chapter 21
Nemai Chandra Karmakar
Various smart antennas developed for automatic radio frequency identification (RFID) readers are presented. The main smart antennas types of RFID... Sample PDF
Smart Antennas for Automatic Radio Frequency Identification Readers
Chapter 22
Konstanty Bialkowski, Adam Postula, Amin Abbosh, Marek Bialkowski
This chapter introduces the concept of Multiple Input Multiple Output (MIMO) wireless communication system and the necessity to use a testbed to... Sample PDF
Field Programmable Gate Array Based Testbed for Investigating Multiple Input Multiple Output Signal Transmission in Indoor Environments
Chapter 23
Masahiro Watanabe, Sadao Obana, Takashi Watanabe
Recent studies on directional media access protocols (MACs) using smart antennas for wireless ad hoc networks have shown that directional MACs... Sample PDF
Ad Hoc Networks Testbed Using a Practice Smart Antenna with IEEE802.15.4 Wireless Modules
Chapter 24
Monthippa Uthansakul, Marek E. Bialkowski
This chapter introduces the alternative approach for wideband smart antenna in which the use of tapped-delay lines and frequency filters are... Sample PDF
Wideband Smart Antenna Avoiding Tapped-Delay Lines and Filters
Chapter 25
Jun Cheng, Eddy Taillefer, Takashi Ohira
Three working modes, omni-, sector and adaptive modes, for a compact array antenna are introduced. The compact array antenna is an electronically... Sample PDF
Omni-, Sector, and Adaptive Modes of Compact Array Antenna
About the Contributors