Discriminant Criteria for Pattern Classification

Discriminant Criteria for Pattern Classification

David Zhang (Hong Kong Polytechnic University, Hong Kong), Fengxi Song (New Star Research Institute Of Applied Technology, China), Yong Xu (Harbin Institute of Technology, China) and Zhizhen Liang (Shanghai Jiao Tong University, China)
DOI: 10.4018/978-1-60566-200-8.ch003
OnDemand PDF Download:
$37.50

Abstract

As mentioned in Chapter II, there are two kinds of LDA approaches: classification- oriented LDA and feature extraction-oriented LDA. In most chapters of this session of the book, we focus our attention on the feature extraction aspect of LDA for SSS problems. On the other hand,, with this chapter we present our studies on the pattern classification aspect of LDA for SSS problems. In this chapter, we present three novel classification-oriented linear discriminant criteria. The first one is large margin linear projection (LMLP) which makes full use of the characteristic of the SSS problems. The second one is the minimum norm minimum squared-error criterion which is a modification of the minimum squared-error discriminant criterion. The third one is the maximum scatter difference which is a modification of the Fisher discriminant criterion.
Chapter Preview
Top

Introduction

Linear Discriminant Function and Linear Classifier

Let be a set of training samples from two classes and with samples from , and let be their corresponding class labels. Here means that belongs to whereas means that belongs to . A linear discriminant function is a linear combination of the components of a feature vector which can be written as:, (1) where the vector and the scalar are called weight and bias respectively. The hyperplane is a decision surface which is used to separate samples with positive class labels from samples with negative ones.

A linear discriminant criterion is an optimization model which is used to seek the weight for a linear discriminant function. The chief goal of classification-oriented LDA is to set up an appropriated linear discriminant criterion and to calculate the optimal projection direction, i.e. the weight. Here “optimal” means that after samples are projected onto the weight, the resultant projections of samples from two distinct classes and are fully separated.

Once the weight has been derived from a certain linear discriminant criterion, the corresponding bias can be computed using:, (2) or, (3) where and are respectively the mean training sample and the mean of training samples from the class . They are defined as, (4) and

. (5)

For simplicity, we calculate the bias using the Eq. (2) throughout this chapter.

Let denote the mean of the projected training samples from the class . Thus, the binary linear classifier based on the weight and the bias is defined as follow:, (6) which assigns a class label to an unknown sample . Here, is the sign function. That is, once the weight in a linear discriminant function has been worked out the corresponding binary linear classifier is fixed.

Complete Chapter List

Search this Book:
Reset
Table of Contents
Acknowledgment
Chapter 1
Overview  (pages 1-23)
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
A biometric system can be regarded as a pattern recognition system. In this chapter, we discuss two advanced pattern recognition technologies for... Sample PDF
Overview
$37.50
Chapter 2
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
This chapter is a brief introduction to biometric discriminant analysis technologies — Section I of the book. Section 2.1 describes two kinds of... Sample PDF
Discriminant Analysis for Biometric Recognition
$37.50
Chapter 3
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
As mentioned in Chapter II, there are two kinds of LDA approaches: classification- oriented LDA and feature extraction-oriented LDA. In most... Sample PDF
Discriminant Criteria for Pattern Classification
$37.50
Chapter 4
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
In this chapter, we first give a brief introduction to Fisher linear discriminant, Foley- Sammon discriminant, orthogonal component discriminant... Sample PDF
Orthogonal Discriminant Analysis Methods
$37.50
Chapter 5
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
In this chapter, we mainly present three kinds of weighted LDA methods. In Sections 5.1, 5.2 and 5.3, we respectively present parameterized direct... Sample PDF
Parameterized Discriminant Analysis Methods
$37.50
Chapter 6
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
In this chapter, we introduce two novel facial feature extraction methods. The first is multiple maximum scatter difference (MMSD) which is an... Sample PDF
Two Novel Facial Feature Extraction Methods
$37.50
Chapter 7
Tensor Space  (pages 135-149)
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
In this chapter, we first give the background materials for developing tensor discrimination technologies in Section 7.1. Section 7.2 introduces... Sample PDF
Tensor Space
$37.50
Chapter 8
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
Tensor principal component analysis (PCA) is an effective method for data reconstruction and recognition. In this chapter, some variants of... Sample PDF
Tensor Principal Component Analysis
$37.50
Chapter 9
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
Linear discriminant analysis is a very effective and important method for feature extraction. In general, image matrices are often transformed into... Sample PDF
Tensor Linear Discriminant Analysis
$37.50
Chapter 10
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
In this chapter, we describe two tensor-based subspace analysis approaches (tensor ICA and tensor NMF) that can be used in many fields like face... Sample PDF
Tensor Independent Component Analysis and Tensor Non-Negative Factorization
$37.50
Chapter 11
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
In this chapter, we describe tensor-based classifiers, tensor canonical correlation analysis and tensor partial least squares, which can be used in... Sample PDF
Other Tensor Analysis and Further Direction
$37.50
Chapter 12
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
In the past decades while biometrics attracts increasing attention of researchers, people also have found that the biometric system using a single... Sample PDF
From Single Biometrics to Multi-Biometrics
$37.50
Chapter 13
Feature Level Fusion  (pages 273-304)
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
This chapter introduces the basis of feature level fusion and presents two feature level fusion examples. As the beginning, Section 13.1 provides an... Sample PDF
Feature Level Fusion
$37.50
Chapter 14
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
With this chapter we aims at describing several basic aspects of matching score level fusion. Section 14.1 provides a description of basic... Sample PDF
Matching Score Level Fusion
$37.50
Chapter 15
Decision Level Fusion  (pages 328-348)
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
With this chapter, we first present a variety of decision level fusion rules and classifier selection approaches, and then show a case study of face... Sample PDF
Decision Level Fusion
$37.50
Chapter 16
Book Summary  (pages 349-358)
David Zhang, Fengxi Song, Yong Xu, Zhizhen Liang
With the title “Advanced Pattern Recognition Technologies with Applications to Biometrics” this book mainly focuses on two kinds of advanced... Sample PDF
Book Summary
$37.50
About the Authors