Grid Computing Initiatives in India

Grid Computing Initiatives in India

Jyotsna Sharma (Thapar University, India)
DOI: 10.4018/978-1-60566-184-1.ch029
OnDemand PDF Download:


Efforts in Grid Computing, both in academia and industry, continue to grow rapidly worldwide for research, scientific and commercial purposes. Building a commanding position in Grid computing is crucial for India. The major Indian National Grid Computing initiative is GARUDA. Other major efforts include the BIOGRID and VISHWA. Several Indian IT companies too are investing a lot into the research and development of grid computing technology. Though grid computing is presently at a fairly nascent stage, it is seen as a cutting edge technology. This chapter presents the state-of-the-art of grid computing technology and the India’s efforts in developing this emerging technology.
Chapter Preview


The term ‘Grid Computing’ is relatively new and means a lot of different things to a lot of different people (Jennifer, 2003). The grid concepts and technologies were first expressed by Foster and Kesselman in 1998. Built on the pervasive Internet standards, grid computing enables research-oriented organizations to solve problems that were infeasible to solve due to computing and data-integration constraints. Grids also reduce costs through automation and improved IT resource utilization. Grids help optimize the infrastructure to balance workloads and provide extra capacity for high-demand applications (Chawla, 2007). Grid computing can increase an organization’s agility, enabling more efficient business processes and greater responsiveness to changing business and market demands.

Grid computing uses the resources of several computers connected by a network (usually the internet) to solve large-scale computation problems. These computers need not be the powerful supercomputers or mainframes. They could be the personal computers, running different operating systems on many hardware platforms. A study showed that more than 90% of the computer power remained free most of the time in case of normal desktops (Chopra, 2007). This idle time on several thousands of computers throughout the world is used through the scheme of CPU scavenging to handle applications that would otherwise require the power of expensive supercomputers. In the SETI@home project and others like it, volunteers around the world allow their computers to be used for scientific research which shows that some people are willing to share for no direct benefit to themselves (Anderson, 2002; SETI@Home, n.d.). People on the internet can be motivated to contribute their idle resources (Abramson, 2000). The wide variety of resources distributed geographically, are used as a single unified resource which is known as the ‘computational grid’ (Baker, 2000).

Key Terms in this Chapter

Middleware: It is the software that manages activity on the Grid like enabling the user to access computers distributed over the network and organizing/integrating the disparate computational resources of the Grid into a coherent whole. The middleware is conceptually in between the two types of software (operating systems and applications software).

Metacomputing: A particular type of distributed computing which involved linking up supercomputer centers with what was, at the time, high speed networks

Virtual Organizations: Virtual Organization is a group of individuals or institutions who share the computing resources of a “grid” for a common goal.

CPU-Scavenging/Cycle-Scavenging: A technique that makes use of instruction cycles on desktop computers that would otherwise be wasted at night,during lunch, or even in the scattered seconds throughout the day when the computer is waiting for user input or slow devices

Grid Computing: A type of computing which relies on complete computers connected by a conventional network interface, to allow organizations to provision and scale resources as needs arise, thereby preventing the underutilization of resources (computers, networks, data archives, instruments)

High-Performance Technical Computing (HPTC): It refers to the engineering applications of cluster-based computing (such as computational fluid dynamics and the building and testing of virtual prototypes).

High Performance Computing (HPC): HPC refers to the use of supercomputers and computer clusters, that is, computing systems(in or above the teraflop-region) comprised of multiple processors linked together in a single system with commercially available interconnects

Distributed Computing: A computer processing method in which different parts of a program run simultaneously on two or more computers communicating with each other over a network.

Virtual private network (VPN): VPN is a private communications network often used by companies or organizations to communicate confidentially over a public network.

Complete Chapter List

Search this Book:
Editorial Advisory Board
Table of Contents
Ruth E. Shaw
Emmanuel Udoh, Frank Zhigang Wang
Emmanuel Udoh
Chapter 1
Emmanuel Udoh, Frank Zhigang Wang, Vineet R. Khare
This chapter presents a historical record of the advent of Grid with a recourse to some basic definitions commonly accepted by most researchers. It... Sample PDF
Overview of Grid Computing
Chapter 2
Eric Aubanel
The problem of load balancing parallel applications is particularly challenging on computational grids, since the characteristics of both the... Sample PDF
Resource-Aware Load Balancing of Parallel Applications
Chapter 3
Enis Afgan, Purushotham Bangalore
Grid computing has emerged as the next generation computing platform. Because of the resource heterogeneity that exists in the grid environment... Sample PDF
Assisting Efficient Job Planning and Scheduling in the Grid
Chapter 4
Kuo-Chan Huang, Po-Chi Shih, Yeh-Ching Chung
Most current grid environments are established through collaboration among a group of participating sites which volunteer to provide free computing... Sample PDF
Effective Resource Allocation and Job Scheduling Mechanisms for Load Sharing in a Computational Grid
Chapter 5
Tevfik Kosar
As the data requirements of scientific distributed applications increase, the access to remote data becomes the main performance bottleneck for... Sample PDF
Data-Aware Distributed Batch Scheduling
Chapter 6
Gianni Pucciani, Flavia Donno, Andrea Domenici, Heinz Stockinger
Data replication is a well-known technique used in distributed systems in order to improve fault tolerance and make data access faster. Several... Sample PDF
Consistency of Replicated Datasets in Grid Computing
Chapter 7
Ming Wu, Xian-He Sun
Rapid advancement of communication technology has changed the landscape of computing. New models of computing, such as business-on-demand, Web... Sample PDF
Quality of Service of Grid Computing
Chapter 8
QoS in Grid Computing  (pages 75-83)
Zhihui Du, Zhili Cheng, Xiaoying Wang, Chuang Lin
This chapter first summarizes popular terms of QoS related concepts and technologies in grid computing, including SLA, End-to-End QoS Provision and... Sample PDF
QoS in Grid Computing
Chapter 9
Kris Bubendorfer, Ben Palmer, Ian Welch
A Grid resource broker is the arbiter for access to a Grid’s computational resources and therefore its performance and functionality has a... Sample PDF
Trust and Privacy in Grid Resource Auctions
Chapter 10
Sandro Fiore, Alessandro Negro, Salvatore Vadacca, Massimo Cafaro, Giovanni Aloisio, Roberto Barbera
Grid computing is an emerging and enabling technology allowing organizations to easily share, integrate and manage resources in a distributed... Sample PDF
An Architectural Overview of the GRelC Data Access Service
Chapter 11
Man Wang, Zhihui Du, Zhili Cheng
Resource Management System (RMS), which manages the Grid resources and matches the applications’ requests to the proper resources, is one of the... Sample PDF
Adaptive Resource Management in Grid Environment
Chapter 12
Vineet R. Khare, Frank Zhigang Wang
The need for a dynamic and scalable expansion of the grid infrastructure and resources and other scalability issues in terms of execution efficiency... Sample PDF
Bio-Inspired Grid Resource Management
Chapter 13
Yuhui Deng, Frank Zhigang Wang, Na Helian
Storage Grid is a new model for deploying and managing the heterogeneous, dynamic, large-scale, and geographically distributed storage resources.... Sample PDF
Service Oriented Storage System Grid
Chapter 14
Dominic Cherry, Maozhen Li, Man Qi
This chapter presents MediaGrid, a distributed storage system for archiving broadcast media contents. MediaGrid utilizes storage resources donated... Sample PDF
A Distributed Storage System for Archiving Broadcast Media Content
Chapter 15
Maozhen Li, Man Qi, Bin Yu
The computational grid is rapidly evolving into a service-oriented computing infrastructure that facilitates resource sharing and large-scale... Sample PDF
Service Discovery with Rough Sets
Chapter 16
Irfan Habib, Ashiq Anjum, Richard McClatchey
Due to some barriers to adoption we have not seen a proliferation of Grid Computing technologies throughout e-Science or other domains. This chapter... Sample PDF
On the Pervasive Adoption of Grid Technologies: A Grid Operating System
Chapter 17
Kurt Vanmechelen, Jan Broeckhove, Wim Depoorter, Khalid Abdelkader
As grid computing technology moves further up the adoption curve, the issues of dealing with conflicting user requirements formulated by different... Sample PDF
Pricing Computational Resources in Grid Economies
Chapter 18
Rosario M. Piro
Large, geographically distributed and heterogeneous computing infrastructures, such as the Grid, often span multiple organizations and... Sample PDF
Resource Usage Accounting in Grid Computing
Chapter 19
Frans Arickx, Jan Broeckhove, Peter Hellinckx, David Dewolfs, Kurt Vanmechelen
Quantum structure or scattering calculations often belong to a class of computational problems involving the aggregation of a set of matrices... Sample PDF
Grid-Based Nuclear Physics Applications
Chapter 20
Gabriel Aparicio, Fernando Blanco, Ignacio Blanquer, César Bonavides, Juan Luis Chaves, Miguel Embid, Álvaro Hernández
In the last years an increasing demand for Grid Infrastructures has resulted in several international collaborations. This is the case of the EELA... Sample PDF
Developing Biomedical Applications in the Framework of EELA
Chapter 21
Gerald Schaefer, Roger Tait
Efficient approaches to computationally intensive image processing tasks are currently highly sought after. In this chapter, the authors show how a... Sample PDF
Distributed Image Processing on a Blackboard System
Chapter 22
Daniele Andreotti, Armando Fella, Eleonora Luppi
The BaBar experiment uses data since 1999 in examining the violation of charge and parity (CP) symmetry in the field of high energy physics. This... Sample PDF
Simulated Events Production on the Grid for the BaBar Experiment
Chapter 23
Diego Liberati
A framework is proposed that creates, uses, and communicates information, whose organizational dynamics allows performing a distributed cooperative... Sample PDF
A Framework for Semantic Grid in E-Science
Chapter 24
Roberto Barbera, Valeria Ardizzone, Leandro Ciuffo
The Grid INFN virtual Laboratory for Dissemination Activities (GILDA) is a fully working Grid test-bed devoted to training and dissemination... Sample PDF
Grid INFN Virtual Laboratory for Dissemination Activities (GILDA)
Chapter 25
Dirk Gorissen, Tom Dhaene, Piet Demeester, Jan Broeckhove
The simulation and optimization of complex systems is a very time consuming and computationally intensive task. Therefore, global surrogate modeling... Sample PDF
Grid Enabled Surrogate Modeling
Chapter 26
Patrik Skogster
Grid computing is becoming as essential part of different business analysis. In traditional business computing infrastructures data transfer occurs... Sample PDF
GIS Grids and the Business Use of GIS Data
Chapter 27
Gokop Goteng, Ashutosh Tiwari, Rajkumar Roy
The emerging grid technology provides a secured platform for multidisciplinary experts in the security intelligence profession to collaborate and... Sample PDF
Grid Computing: Combating Global Terrorism with the World Wide Grid
Chapter 28
Salvatore Scifo
This chapter focuses on the efforts to design and develop a standard pure Java API to access the metadata service of the EGEE Grid middleware, and... Sample PDF
Accessing Grid Metadata through a Web Interface
Chapter 29
Jyotsna Sharma
Efforts in Grid Computing, both in academia and industry, continue to grow rapidly worldwide for research, scientific and commercial purposes.... Sample PDF
Grid Computing Initiatives in India
Chapter 30
Hai Jin, Li Qi, Jie Dai, Yaqin Luo
A grid system is usually composed of thousands of nodes which are broadly distributed in different virtual organizations. Owing to geographical... Sample PDF
Dynamic Maintenance in ChinaGrid Support Platform
About the Contributors