Review of fMRI Data Analysis: A Special Focus on Classification

Review of fMRI Data Analysis: A Special Focus on Classification

Shantipriya Parida (Huawei Technologies India Private Limited, Karnataka, India) and Satchidananda Dehuri (Ajou University, Suwon, South Korea)
Copyright: © 2014 |Pages: 26
DOI: 10.4018/ijehmc.2014040101
OnDemand PDF Download:
$30.00
List Price: $37.50

Abstract

Classification of brain states obtained through functional magnetic resonance imaging (fMRI) poses a serious challenges for neuroimaging community to uncover discriminating patterns of brain state activity that define independent thought processes. This challenge came into existence because of the large number of voxels in a typical fMRI scan, the classifier is presented with a massive feature set coupled with a relatively small training samples. One of the most popular research topics in last few years is the application of machine learning algorithms for mental states classification, decoding brain activation, and finding the variable of interest from fMRI data. In classification scenario, different algorithms have different biases, in the sequel performances differs across datasets, and for a particular dataset the accuracy varies from classifier to classifier. To overcome the limitations of individual techniques, hybridization or fusion of these machine learning techniques emerged in recent years which have shown promising result and open up new direction of research. This paper reviews the machine learning techniques ranging from individual classifiers, ensemble, and hybrid techniques used in cognitive classification with a well balance treatment of their applications, performance, and limitations. It also discusses many open research challenges for further research.
Article Preview

2. Machine Learning And Challenges In Fmri

This section is a conglomeration of two subsections 2.1 and 2.2 for briefing machine learning and discusses the challenges of fMRI respectively.

Complete Article List

Search this Journal:
Reset
Open Access Articles: Forthcoming
Volume 9: 4 Issues (2018): 1 Released, 3 Forthcoming
Volume 8: 4 Issues (2017)
Volume 7: 4 Issues (2016)
Volume 6: 4 Issues (2015)
Volume 5: 4 Issues (2014)
Volume 4: 4 Issues (2013)
Volume 3: 4 Issues (2012)
Volume 2: 4 Issues (2011)
Volume 1: 4 Issues (2010)
View Complete Journal Contents Listing