Towards Management of Interoperable Learning Objects

Towards Management of Interoperable Learning Objects

Tanko Ishaya
DOI: 10.4018/978-1-60566-014-1.ch190
OnDemand:
(Individual Chapters)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

Developments in the Internet and the World Wide Web (WWW) technologies have led to an evolving trend in Electronic learning (e-learning). E-learning is now one of the most fast growing trends in computing and higher education (Ishaya & Wood, 2005) and certainly becoming a dominant way of learning in workplace settings across other organizations (Mungania, 2003). From its initial roots as an information-sharing tool, the Web has seen an exponential growth into a myriad of applications, ranging from very serious e-business to pure leisure environments. Likewise, research into technology support for education has quickly recognized the potential and possibilities for using the Web as a learning tool (Ishaya, Jenkins, & Goussios, 2002). Thus, the Web technology is now an established medium for promoting student learning, and today there are a great many online learning materials, tutorials, and courses supported by different learning tools with varying levels of complexity. It can be observed that there are many colleges and universities, each of which teaches certain concepts based on defined principles that remain constant from institution to institution. This results in thousands of similar descriptions of the same concept. This means that institutions spend a lot of resources producing multiple versions of the same learning objects that could be shared at much lower cost. The Internet is a ubiquitous supporting environment for sharing of learning materials. As a consequence, many institutions take advantage of the Internet to provide online courses (Ishaya et al., 2002; Jack, Bonk, & Jacobs, 2002; Manouselis, Panagiotou, Psichidou, & Sampson, 2002). Many other agencies have started offering smaller and more portable learning materials defined as learning objects (Harris, 1999; POMETEUS, 2002). Common standards for metadata, learning objects, and services are mandatory for the success of Web-based learning, which is why the creation of such standards for learning objects and related standards has being one of focus for research and development within the past few years. This includes the creation of accredited standards from the IEEE Learning Technology Standards Committee (LTSC) for Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Instructional Management System (IMS), and so on. All these metadata models define how learning materials can be described in an interoperable way. There have also been intensive developments in the area of e-learning technology and the wide variety of learning environments from many different vendors (e.g., Sakai, Moodle, and Blackboard). While most of these approaches provide a means for describing, sharing, and reusing resources, the concept of interoperability and heterogeneous access to content chunks is yet to be fully achieved. This results in thousands of similar descriptions of the same concept, even within the same learning management system (LMS), and because these concepts may have been defined using different standards, they are not interoperable. What is required therefore is a mechanism and infrastructure for supporting a interoperable system of individual components that can be assembled by mixing and matching content from multiple sources to satisfy individual learner’s requirements. See Wood and Ishaya (2005) for a personality-based approach for building learner profiles.
Chapter Preview
Top

Introduction

Developments in the Internet and the World Wide Web (WWW) technologies have led to an evolving trend in Electronic learning (e-learning). E-learning is now one of the most fast growing trends in computing and higher education (Ishaya & Wood, 2005) and certainly becoming a dominant way of learning in workplace settings across other organizations (Mungania, 2003). From its initial roots as an information-sharing tool, the Web has seen an exponential growth into a myriad of applications, ranging from very serious e-business to pure leisure environments. Likewise, research into technology support for education has quickly recognized the potential and possibilities for using the Web as a learning tool (Ishaya, Jenkins, & Goussios, 2002). Thus, the Web technology is now an established medium for promoting student learning, and today there are a great many online learning materials, tutorials, and courses supported by different learning tools with varying levels of complexity. It can be observed that there are many colleges and universities, each of which teaches certain concepts based on defined principles that remain constant from institution to institution. This results in thousands of similar descriptions of the same concept. This means that institutions spend a lot of resources producing multiple versions of the same learning objects that could be shared at much lower cost.

The Internet is a ubiquitous supporting environment for sharing of learning materials. As a consequence, many institutions take advantage of the Internet to provide online courses (Ishaya et al., 2002; Jack, Bonk, & Jacobs, 2002; Manouselis, Panagiotou, Psichidou, & Sampson, 2002). Many other agencies have started offering smaller and more portable learning materials defined as learning objects (Harris, 1999; POMETEUS, 2002).

Common standards for metadata, learning objects, and services are mandatory for the success of Web-based learning, which is why the creation of such standards for learning objects and related standards has being one of focus for research and development within the past few years. This includes the creation of accredited standards from the IEEE Learning Technology Standards Committee (LTSC) for Learning Object Metadata (LOM), Sharable Content Object Reference Model (SCORM), Instructional Management System (IMS), and so on. All these metadata models define how learning materials can be described in an interoperable way. There have also been intensive developments in the area of e-learning technology and the wide variety of learning environments from many different vendors (e.g., Sakai, Moodle, and Blackboard). While most of these approaches provide a means for describing, sharing, and reusing resources, the concept of interoperability and heterogeneous access to content chunks is yet to be fully achieved. This results in thousands of similar descriptions of the same concept, even within the same learning management system (LMS), and because these concepts may have been defined using different standards, they are not interoperable.

What is required therefore is a mechanism and infrastructure for supporting a interoperable system of individual components that can be assembled by mixing and matching content from multiple sources to satisfy individual learner’s requirements. See Wood and Ishaya (2005) for a personality-based approach for building learner profiles.

The purpose of this article is to examine current approaches used in managing learning objects and suggests the use of ontologies within the domain of e-learning for effective management of interoperable learning objects. In the next section, a background to this article is presented; the current state of e-learning metadata standards is examined and a brief overview of the semantic Web evolution in the relation to e-learning technology development is given. In the third section, the author discusses the driving force behind the need for effective management of interoperability of learning objects. In the fourth section, the article presents e-learning ontologies as the state of the art way of managing interoperable learning objects. The fifth section concludes the article with suggestions for further research.

Key Terms in this Chapter

Stereotypes: Extensions to the UML vocabulary, allowing additional text descriptions to be applied to the notation. The stereotype is shown between chevron brackets <<>>.

Constraints: Extensions to the semantics of an UML element. These allow the inclusion of rules that indicate permitted ranges or conditions on an element.

Tagged Value: extensions to the properties of an UML element.

Distributed, concurrent, and connected models, with an object-oriented approach: Distributed—each object maintains its own state and characteristics, distinct from all others, Concurrent—each object can potentially execute activities/procedures in parallel with all others, Connected—each object can send messages to others through a links.

Electronic Customer Relationship Management (eCRM): CRM comprises the methods, systems, and procedures that facilitate the interaction between the firm and its customers. The development of new technologies, especially the proliferation of self-service channels like the Web and WAP phones, has changed consumer buying behaviour and forced the companies to manage electronically the relationships with customers. The new CRM systems are using electronic devices and software applications that attempt to personalize and add value to customer-company interactions.

Customer Lifetime Value (CLV): Consists in taking into account the total financial contribution (i.e., revenues minus costs—of a customer over his or her entire life of a business relationship with the company.

Eriksson-Penker Process Diagram: UML extension created to support business modeling, which adapts the basic UML activity diagram to represent business processes.

Complete Chapter List

Search this Book:
Reset