Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Access Latency

Handbook of Research on Scalable Computing Technologies
Access latency is the time that elapses from when a node sends a request for a file until it receives the complete file.
Published in Chapter:
The State of the Art and Open Problems in Data Replication in Grid Environments
Mohammad Shorfuzzaman (University of Manitoba, Canada), Rasit Eskicioglu (University of Manitoba, Canada), and Peter Graham (University of Manitoba, Canada)
Copyright: © 2010 |Pages: 31
DOI: 10.4018/978-1-60566-661-7.ch022
Data Grids provide services and infrastructure for distributed data-intensive applications that need to access, transfer and modify massive datasets stored at distributed locations around the world. For example, the next-generation of scientific applications such as many in high-energy physics, molecular modeling, and earth sciences will involve large collections of data created from simulations or experiments. The size of these data collections is expected to be of multi-terabyte or even petabyte scale in many applications. Ensuring efficient, reliable, secure and fast access to such large data is hindered by the high latencies of the Internet. The need to manage and access multiple petabytes of data in Grid environments, as well as to ensure data availability and access optimization are challenges that must be addressed. To improve data access efficiency, data can be replicated at multiple locations so that a user can access the data from a site near where it will be processed. In addition to the reduction of data access time, replication in Data Grids also uses network and storage resources more efficiently. In this chapter, the state of current research on data replication and arising challenges for the new generation of data-intensive grid environments are reviewed and open problems are identified. First, fundamental data replication strategies are reviewed which offer high data availability, low bandwidth consumption, increased fault tolerance, and improved scalability of the overall system. Then, specific algorithms for selecting appropriate replicas and maintaining replica consistency are discussed. The impact of data replication on job scheduling performance in Data Grids is also analyzed. A set of appropriate metrics including access latency, bandwidth savings, server load, and storage overhead for use in making critical comparisons of various data replication techniques is also discussed. Overall, this chapter provides a comprehensive study of replication techniques in Data Grids that not only serves as a tool to understanding this evolving research area but also provides a reference to which future e orts may be mapped.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR